Для связи в whatsapp +905441085890

Качественная теория дифференциальных уравнений в XIX — начале XX в.

Предмет: Философия

Тип работы: Реферат

У вас нет времени или вам не удаётся понять эту тему? Напишите мне в whatsapp, согласуем сроки и я вам помогу!

На странице рефераты по философии вы найдете много готовых тем для рефератов по предмету «Философия».

Дополнительные готовые рефераты на темы:

  1. Аксиоматический метод со времен Античности до работ Д. Гильберта
  2. Рождение математического анализа в трудах И. Ньютона
  3. Рождение математического анализа в трудах Г. Лейбница
  4. Рождение аналитической геометрии и ее роль в развитии математики в XVII в.
  5. Нестандартный анализ: предыстория и история его рождения
  6. Аналитическая теория дифференциальных уравнений XIX—XX вв. и 21-я проблема Гильберта.
  7. Проблема решения алгебраических уравнений в радикалах от евклидовых «Начал» до Н.Г. Абеля.
  8. Рождение и развитие теории Галуа в XIX — первой половине XX в.
  9. Метод многогранника от И. Ньютона до конца XX в.
  10. Открытие неевклидовой геометрии и ее значение для развития математики и математического естествознания.

Введение

Одним из важных разделов теории дифференциальных уравнений является качественная теория. Качественная теория — математическая дисциплина, которая изучает свойства решений обыкновенных дифференциальных уравнений без нахождения самих решений.

Развитие такой теории было вызвано тем, что в элементарных функциях и даже в квадратурах интегрируются очень немногие классы дифференциальных уравнений. Вместе с тем часто бывает необходимо знать не конкретные численные решения, а особенности решений: число и характер (устойчивость или неустойчивость) состояний равновесия, наличие замкнутых траекторий, число предельных циклов и их взаимное расположение и т.д.

Качественная структура отражает весьма существенные черты динамической системы, представляющие как математический интерес, так и большой интерес для приложений (в различных областях физики и техники).

Понятие дифференциального уравнения

Уравнения, которые, кроме неизвестных функций одного или нескольких переменных, содержат также их производные, называются дифференциальными. Дифференциальные уравнения называются обыкновенными, если неизвестные функции являются функциями одного переменного, в противном случае дифференциальные уравнения называются уравнениями в частных производных.

Соотношение вида

называется дифференциальным уравнением n-го порядка. Решением дифференциального уравнения называется функция x=x(t), определенная на некотором интервале D’t, которая, будучи подставлена в это уравнение, обращает его в тождество на всем интервале D. Это уравнение можно рассматривать как функцию, определяющую неявно производную n-го порядка x(n). При определенных условиях его можно решить относительно x(n):

Пусть x=x(t) – решение данного дифференциального уравнения. Тогда x(t) является непрерывной и непрерывно дифференцируемой функцией t. На плоскости (t,x) решению x=x(t) будет соответствовать непрерывная кривая, называемая интегральной кривой.

Функция x=x(t,C) называется общим решением дифференциального уравнения, если путем соответствующего выбора постоянной можно любую интегральную кривую.

Непрерывная модель может быть описана математически системой дифференциальных уравнений. Один класс уравнений служит главным образом для характеристики отдельных составляющих, а другой — для описания связей между этими составляющими. При математическом описании мо­дели указанные два типа уравнений обычно сочетаются с эксперименталь­ной проверкой. Полученная система уравнений может быть затем сведена к одному уравнению, связывающему вход и выход системы, хотя подобное преобразование не всегда элементарно. Решение системы уравнений с по­стоянными коэффициентами гораздо проще чем системы уравнений с пере­менными коэффициентами, а потому рассматривается в первую очередь.

Дифференциальное уравнение

Дифференциальное уравнение — уравнение, связывающее значение производной функции с самой функцией, значениями независимой переменной, числами (параметрами). Порядок входящих в уравнение производных может быть различен (формально он ничем не ограничен). Производные, функции, независимые переменные и параметры могут входить в уравнение в различных комбинациях или все, кроме хотя бы одной производной, отсутствовать вовсе. Не любое уравнение, содержащее производные неизвестной функции, является дифференциальным уравнением. Например, f'(x)=f(f(x)) не является дифференциальным уравнением.

Важнейшим вопросом для дифференциальных уравнений является существование и единственность их решения. Разрешение этого вопроса дают теоремы существования и единственности, указывающие необходимые и достаточные для этого условия. Для обыкновенных дифференциальных уравнений такие условия были сформулированы Липшицем (1864). Для уравнений в частных производных соответствующая теорема была доказана С. В. Ковалевской (1874).

Решения дифференциальных уравнений подразделяются на общие и частные решения. Общие решения включают в себя неопределенные постоянные, а для уравнений в частных производных — произвольные функции от независимых переменных, которые могут быть уточнены из дополнительных условий интегрирования (начальных условий для обыкновенных дифференциальных уравнений, начальных и граничных условий для уравнений в частных производных). После определения вида указанных постоянных и неопределенных функций решения становятся частными.

Первоначально дифференциальные уравнения возникли из задач механики, в которых требовалось определить координаты тел, их скорости и ускорения, рассматриваемые как функции времени при различных воздействиях. К дифференциальным уравнениям приводили также некоторые рассмотренные в то время геометрические задачи.

Основой теории дифференциальных уравнений стало дифференциальное исчисление, созданное Лейбницем и Ньютоном (1642—1727). Сам термин «дифференциальное уравнение» был предложен в 1676 году Лейбницем. дифференциальный уравнение алгебраический радикал

Из огромного числа работ XVIII века по дифференциальным уравнениям выделяются работы Эйлера (1707—1783) и Лагранжа (1736—1813). В этих работах была прежде развита теория малых колебаний, а следовательно — теория линейных систем дифференциальных уравнений; попутно возникли основные понятия линейной алгебры (собственные числа и векторы в n-мерном случае). Вслед за Ньютоном Лаплас и Лагранж, а позже Гаусс (1777—1855) развивают также методы теории возмущений.

Когда была доказана неразрешимость алгебраических уравнений в радикалах, Жозеф Лиувилль (1809—1882) построил аналогичную теорию для дифференциальных уравнений, установив невозможность решения ряда уравнений (в частности таких классических, как линейные уравнения второго порядка) в элементарных функциях и квадратуре. Позже Софус Ли (1842—1899), анализируя вопрос об интегрировании уравнений в квадратурах, пришёл к необходимости подробно исследовать группы диффеоморфизмов (получившие впоследствии имя групп Ли) — так по теории дифференциальных уравнений возникла одна из самых плодотворных областей современной математики, дальнейшее развитие которой было тесно связано совсем с другими вопросами (алгебры Ли ещё раньше рассматривали Симеон-Дени Пуассон (1781—1840) и, особенно, Карл Густав Якоб Якоби (1804—1851)).

Понятие дифференциальных уравнений

Теория дифференциальных уравнений – раздел математики, который занимается изучением дифференциальных уравнений и связанных с ними задач. Её результаты применяются во многих естественных науках, особенно широко – в физике.

Различают обыкновенные дифференциальные уравнения (ОДУ) и дифференциальные уравнения в частных производных (УРЧП). Существуют также стохастические дифференциальные уравнения (СДУ), включающие случайные процессы

Первоначально дифференциальные уравнения возникли из задач механики, в которых участвовали координаты тел, их скорости и ускорения, рассматриваемые как функции времени.

Одно из простейших применений дифференциальных уравнений – решение нетривиальной задачи нахождения траектории тела по известным проекциям ускорения. Например, в соответствии со вторым законом Ньютона, ускорение тела пропорционально сумме действующих сил; соответствующее дифференциальное уравнение имеет вид. Зная действующие силы (правая часть), можно решить это уравнение и, учитывая начальные условия (координаты и скорость в начальный момент времени), найти траекторию движения точки.

Дифференциальное уравнение y’ = y, вместе с начальным условием y(0) = 1, задаёт экспоненту: y(x) = ex. Если x обозначает время, то эта функция описывает рост популяции в условиях неограниченности ресурсов.

Решением дифференциального уравнения y’ = f(x), правая часть которого не зависит от неизвестной функции, является неопределённый интеграл:, где C – произвольная константа.

Роль теории дифференциальных уравнений в современной математике и ее приложениях:

Теория дифференциальных уравнений является одним из самых больших разделов современной математики. Чтобы охарактеризовать ее место в современной математической науке, прежде всего необходимо подчеркнуть основные особенности теории дифференциальных уравнений, состоящей из двух обширных областей математики: теории обыкновенных дифференциальных уравнений и теории уравнений с частными производными.

Исследуя полученные дифференциальные уравнения вместе с дополнительными условиями, которые, как правило, задаются в виде начальных и граничных условий, математик получает сведения о происходящем явлении, иногда может узнать его прошлое и будущее. Изучение математической модели математическими методами позволяет не только получить качественные характеристики физических явлений и рассчитать с заданной степенью точности ход реального процесса, но и дает возможность проникнуть в суть физических явлений, а иногда предсказать и новые физические эффекты. Бывает, что сама природа физического явления подсказывает и подходы, и методы математического исследования. Критерием правильности выбора математической модели является практика, сопоставление данных математического исследования с экспериментальными данными.

Для составления математической модели в виде дифференциальных уравнений нужно, как правило, знать только локальные связи и не нужна информация обо всем физическом явлении в целом. Математическая модель дает возможность изучать явление в целом, предсказать его развитие, делать количественные оценки изменений, происходящих в нем с течением времени. Напомним, что на основе анализа дифференциальных уравнений так были открыты электромагнитные волны, и только после экспериментального подтверждения Герцем фактического существования электромагнитных колебаний стало возможным рассматривать уравнения Максвелла как математическую модель реального физического явления.

 Появление дифференциальных уравнений при описании систем управления

Любая система автоматического регулирования представляет совокупность отдельных взаимодействующих друг с другом элементов, соединенных между собой связями. Первым этапом при составлении дифференциальных уравнений систем автоматического регулирования является разделение системы на отдельные элементы и составление уравнений этих элементов. Эти уравнения могут быть интегральными, линейными, трансцендентными, но чаще всего это оказываются дифференциальные уравнения. Дифференциальные уравнения элементов и уравнения связей между отдельными элементами описывают процесс в системе, то есть изменение по времени всех координат системы.

Состояние системы, а также каждого входящего в нее элемента характеризуется некоторым числом независимых переменных. Этими переменными могут быть как электрические величины (ток, напряжение и т. д.), так и механические (скорость, угол поворота и т. д.). Обычно, чтобы характеризовать состояние системы или ее элемента, выбирают одну обобщенную координату на входе системы или элемента и одну — на выходе. Будем обозначать входную величину g(t), а выходную x(t). В ряде случаев такое представление невозможно, так как система или ее элемент могут иметь несколько входных и выходных величин. В многомерных системах можно рассматривать векторные входную и выходную величины с размерностями, совпадающими соответственно с числом входных и выходных элементов системы.

Рассмотрим пример: управление самолетом по углу рыскания. Предположим, что осевая линия самолета под действием порывов ветра отклонилась от заданного направления y на угол (рис.1). Возвращение самолета на заданный курс осуществляется с помощью руля, отклонение которого равно . Предполагается, что относительно оси, проходящей через центр тяжести ЦТ, самолет имеет момент инерции J. Восстанавливающая сила руля пропорциональна , трением в воздухе пренебрегаем.

Уравнения, которые, кроме неизвестных функций одного или нескольких переменных, содержат также их производные, называются дифференциальными. Дифференциальные уравнения называются обыкновенными, если неизвестные функции являются функциями одного переменного, в противном случае дифференциальные уравнения называются уравнениями в частных производных.

Соотношение вида

называется дифференциальным уравнением n-го порядка. Решением дифференциального уравнения называется функция x=x(t), определенная на некотором интервале t, которая, будучи подставлена в это уравнение, обращает его в тождество на всем интервале . Это уравнение можно рассматривать как функцию, определяющую неявно производную n-го порядка x(n). При определенных условиях его можно решить относительно x(n):

Пусть x=x(t) — решение данного дифференциального уравнения. Тогда x(t) является непрерывной и непрерывно дифференцируемой функцией t. На плоскости (t,x) решению x=x(t) будет соответствовать непрерывная кривая, называемая интегральной кривой.

Функция x=x(t,C) называется общим решением дифференциального уравнения, если путем соответствующего выбора постоянной можно любую интегральную кривую.

Заключение

Поиск решений обыкновенных дифференциальных уравнений привёл к установлению класса специальных функций — часто встречающихся в приложениях функций, не выражающихся через известные элементарные функции. Их свойства были подробно изучены, составлены таблицы значений, определены взаимные связи и т. д.

Развитие теории дифференциальных уравнений позволило в ряде случаев отказаться от требования непрерывности исследуемых функций и ввести обобщённые решения дифференциальных уравнений.

Список литературы

1. Андронов А.А., Леонтович Е.А., Гордон И.И., Майер А.Г. Качественная теория динамических систем на плоскости. — М.: изд-во «Наука», 1966. -568 стр.

2. Баутин Н.Н., Леонтович Е.А. Методы и приемы качественного исследования динамических систем на плоскости. — М.: изд-во «Наука», 1989. -486 стр.

3. Немыцкий В.В., Степанов В.В. качественная теория дифференциальных уравнений. — М.-Л.:ОГИЗ, 1947. — 448 стр.

4. Пуанкаре А. О кривых, определяемых дифференциальными уравнениями. — М.-Л.: ГИТТЛ, 1947. — 839 стр.

5. Эрроусмит Д., Плейс К. Обыкновенные дифференциальные уравнения. Качественная теория с приложениями: пер. с англ. — М.: Мир, 1986. -243 стр.