Для связи в whatsapp +905441085890

Метод многогранника от И. Ньютона до конца XX в.

Предмет: Философия

Тип работы: Реферат

У вас нет времени или вам не удаётся понять эту тему? Напишите мне в whatsapp, согласуем сроки и я вам помогу!

На странице рефераты по философии вы найдете много готовых тем для рефератов по предмету «Философия».

Дополнительные готовые рефераты на темы:

  1. Нестандартный анализ: предыстория и история его рождения
  2. Качественная теория дифференциальных уравнений в XIX — начале XX в.
  3. Аналитическая теория дифференциальных уравнений XIX—XX вв. и 21-я проблема Гильберта.
  4. Проблема решения алгебраических уравнений в радикалах от евклидовых «Начал» до Н.Г. Абеля.
  5. Рождение и развитие теории Галуа в XIX — первой половине XX в.
  6. Открытие неевклидовой геометрии и ее значение для развития математики и математического естествознания.
  7. Трансцендентные числа: предыстория, развитие теории в XIX — первой половине XX в.
  8. Место и специфика истории технических наук как направления в истории науки и техники.
  9. Основные периоды в истории развития технических знаний
  10. Технико-технологические знания в строительной и ирригационной практике периода Древних царств (Египет, Месопотамия)

Введение

Современная наука охватывает огромную отрасль знаний — около 15 тысяч дисциплин, которые в различной степени отдалены друг от друга. Современная наука имеет очень сложную организацию. Она разделяется на множество отраслей знания.

Естествознание — наука о природе; совокупность естественных наук, взятая как целое; одна из трех основных областей человеческого знания (наряду с науками об обществе и мышлении). В Новое время природа впервые становится объектом тщательного научного анализа и вместе с тем поприщем активной практической деятельности человека, масштабы которой в силу успехов капитализма постоянно нарастают. Относительно низкий уровень развития науки и вместе с тем овладение человеком мощными силовыми агентами природы (тепловой, механической, а затем и электрической энергией) не могли не привести к хищническому отношению к природе, преодоление которого растянулось на века, вплоть до наших дней.

Объект естествознания — сама природа, предмет — различные виды материи и формы их движения, проявляющиеся в природе, их связи и закономерности.

Физика как ведущая отрасль всего естествознания играет роль стимулятора по отношению к другим отраслям естествознания. Конституирование физики как науки связано в первую очередь с гениальными открытиями Галилео Галилея (1562 — 1642) и Исаака Ньютона (1643 — 1727). Особенно значительны научные прозрения Ньютона.

Роль Ньютона в становлении механистической научной картины мира

В истории развития естествознания можно выделить три научных революции.

Первая революция (аристотелевская) произошла в VI — IV вв. до н.э. в познании мира, в результате которой и появилась на свет наука. Важнейшим фрагментом античной научной картины мира стало последовательное геоцентрическое учение о модели мира. В центре конечной Вселенной находится неподвижная Земля, а Солнце, Луна, планеты и звёзды обращаются вокруг неё по круговым орбитам, расположенным на восьми сферах. Что лежит за последней сферой, не объяснялось.

Вторая глобальная научная революция (ньютоновская) пришлась на XVI — XVIII вв. Её исходным пунктом считается переход от геоцентрической модели мира к гелиоцентрической См.: Кефели И.Ф. История науки и техники. — СПб.: Балт. гос. техн. ун-т, 1995. — С. 100.. В центре бесконечной Вселенной находится Солнце, а Луна, планеты и звёзды обращаются вокруг него. Основной смысл второй научной революции — становление классического естествознания. Итог — механистическая научная картина мира, завершенная И. Ньютоном.

Динамический закон — это физический закон, отображающий объективную закономерность в форме однозначной связи физических величин, выражаемых количественно. Динамической теорией является физическая теория, представляющая совокупность динамических законов. Исторически первой и наиболее простой теорией такого рода и явилась классическая механика Ньютона. Она претендовала на описание механического движения, то есть перемещения в пространстве с течением времени любых тел или частей тел относительно друг друга, с какой угодно точностью.

Метод, примененный Ньютоном, называется сейчас правилом индукции От лат. inductio — наведение. (от единичного к особенному, а от него — к общему). Процесс индукции связан с такой операцией, как сравнение — установление сходства и различия объектов, явлений. Благодаря этому методу Ньютон сумел распространить область применимости законов механики на всю Вселенную и доказать универсальность тяготения См.: Тяготение. От Аристотеля до Эйнштейна / В.Д. Захаров. — М.: Бином. Лаборатория знаний, 2003. — С. 56-57..

Изобретенную теорию Ньютон представил в фундаментальном труде «Математические начала натуральной философии» (1687 г.).

К величайшим научным достижениям ХVII — ХVIII вв. надо отнести закон всемирного тяготения И. Ньютона. Закон всемирного тяготения носит универсальный характер, т.к. ему подчиняется все — малое и большое, земное и небесное. G — постоянная закона тяготения Ньютона.

Закон всемирного тяготения открыл широкие возможности для развития научного подхода к исследованию Вселенной и ее составных частей на основе лишь немногих фундаментальных законов и взаимодействий, имеющих одинаковую силу на Земле, в научной лаборатории и в космосе.

Естественно-научные представления о пространстве Пространство — форма сосуществования материальных объектов. и времени Время — порядок последовательной смены явлений и состояний материи. прошли длинный путь становления и развития. Самые первые из них возникли из очевидного существования в природе твердых физических тел, занимающих определенный объем. Здесь основными были представления о пространстве и времени как о субстанции — нечто относительно устойчивое, то, что существует само по себе, не зависит ни от чего другого (Аристотель, Демокрит). Первая законченная теория пространства — геометрия Евклида. Она была создана примерно 2 000 лет назад и до сих пор считается образцом научной теории. Геометрия Евклида оперирует идеальными математическими объектами, которые существуют как бы вне времени, и в этом смысле пространство в этой геометрии — идеальное математическое пространство. 

Законы механики, сформулированные Ньютоном

Фундаментальные физические теории (законы) представляют собой совокупность наиболее существенных знаний о физических закономерностях. Эти знания не являются исчерпывающими, но на сегодняшний день они наиболее полно отражают физические процессы в природе. В свою очередь, на основе тех или иных фундаментальных теорий формулируются частные физические законы.

Ученые-науковеды едины во мнении, что основу любой физической теории составляют три элемента, основным из которых является совокупность физических величин, с помощью которых описываются объекты данной теории. В механике Ньютона это координаты, импульсы, энергия, силы.

Ньютон впервые создал единую механику всех земных и небесных тел, с общими для них законами инерции, динамики, действия и противодействия, а также взаимного тяготения. Механистическая картина мира напоминала часы: любое событие однозначно определяется начальными условиями, задаваемыми абсолютно точно. В таком мире нет места случайности. В нем возможен демон Лапласа — существо, способное охватить всю совокупность данных о состоянии Вселенной в любой момент времени, могло бы не только предсказать будущее, но и до мельчайших подробностей восстановить прошлое См.: Степин В.С., Горохов В.Г., Розов М.А. Философия науки и техники. — М.: Гардарина, 1996. — С. 78-79..

Непосредственно законы механики, сформулированные Ньютоном, относятся к физическому телу, размерами которого можно пренебречь, материальной точке. Но любое тело макроскопических размеров всегда можно рассматривать как совокупность материальных точек и, следовательно, достаточно точно описать его движения.

Поэтому в современной физике под классической механикой понимают механику материальной точки или системы материальных точек и механику абсолютно твердого тела.

Основания механики Ньютона составляют три закона и два положения относительно природы пространства и времени.

Первый закон Ньютона. Материальная точка в отсутствие действия на нее сил или при взаимном уравновешивании последних находится в состоянии покоя или равномерного прямолинейного движения.

История метода

Метод был описан Исааком Ньютоном в рукописи «De analysi per aequationes numero terminorum infinitas» (лат. Об анализе уравнениями бесконечных рядов), адресованной в 1669 году Барроу, и в работе «De metodis fluxionum et serierum infinitarum» (лат. Метод флюксий и бесконечные ряды) или «Geometria analytica» (лат. Аналитическая геометрия) в собраниях трудов Ньютона, которая была написана в 1671 году. В своих работах Ньютон вводит такие понятия, как разложение функции в ряд, бесконечно малые и флюксии (производные в нынешнем понимании). Указанные работы были изданы значительно позднее: первая вышла в свет в 1711 году благодаря Уильяму Джонсону, вторая была издана Джоном Кользоном в 1736 году уже после смерти создателя. Однако описание метода существенно отличалось от его нынешнего изложения: Ньютон применял свой метод исключительно к полиномам. Он вычислял не последовательные приближения xn, а последовательность полиномов и в результате получал приближённое решение x.

Впервые метод был опубликован в трактате «Алгебра» Джона Валлиса в 1685 году, по просьбе которого он был кратко описан самим Ньютоном. В 1690 году Джозеф Рафсон опубликовал упрощённое описание в работе Analysis aequationum universalis (лат. Общий анализ уравнений). Рафсон рассматривал метод Ньютона как чисто алгебраический и ограничил его применение полиномами, однако при этом он описал метод на основе последовательных приближений xn вместо более трудной для понимания последовательности полиномов, использованной Ньютоном. Наконец, в 1740 году метод Ньютона был описан Томасом Симпсоном как итеративный метод первого порядка решения нелинейных уравнений с использованием производной в том виде, в котором он излагается здесь. В той же публикации Симпсон обобщил метод на случай системы из двух уравнений и отметил, что метод Ньютона также может быть применён для решения задач оптимизации путём нахождения нуля производной или градиента.

В 1879 годуАртурКэливработе The Newton-Fourier imaginary problem (англ. Проблема комплексных чисел Ньютона-Фурье) был первым, кто отметил трудности в обобщении метода Ньютона на случай мнимых корней полиномов степени выше второй и комплексных начальных приближений. Эта работа открыла путь к изучению теории фракталов.

Отделение корней

Во многих приближённых методах нахождения корня уравнения заранее требуется знать какой-либо отрезок, на котором лежит искомый корень, и притом только один этот корень (то есть предъявляемый отрезок не должен содержать других корней уравнения). В этом случае говорят, что корень отделён на отрезке. Отделить корень — значит указать такой отрезок, на котором корень отделён. Заметим, что отделить корень можно не единственным образом: если корень отделён на каком-либо отрезке, то годится и любой меньший отрезок, содержащий этот корень. Вообще говоря, чем меньше отрезок, тем лучше, но при этом не следует забывать о том, что на отделение корня на меньших отрезках также тратятся вычислительные усилия, и, быть может, весьма значительные. Таким образом, часто для начала довольствуются весьма широким отрезком, на котором корень отделён.

Кроме того, часто нужно знать начальное приближениеx к корню (который, заметим, неизвестен). В качестве этого начального приближения берут, как правило, любую точку отрезка, на котором отделён корень, например, его середину, если описание метода не предписывает поступить как-нибудь иначе.

Приведём некоторые утверждения, которые могут помочь при отделении корня.

Теорема 1 Если функция непрерывна на отрезке, причём значения её в концах отрезка и — это числа разных знаков, то на отрезке лежит по крайней мере один корень уравнения.

Практический смысл теоремы в том, что если мы, вычисляя значения функции в некоторых точках, видим, что вычисление в двух соседних точках даёт значения разных знаков, то на отрезке между этими точками лежит отыскиваемый корень. Если же известно заранее, что корень один, то получаем, что корень отделён на найденном отрезке. Этот же способ, когда мы наугад вычисляем значения функции в каких-то точках, может привести к отделению корней и в случае, когда корней несколько, но заранее известно их число или хотя бы оценка сверху для их количества. Рассмотрим иллюстрирующий сказанное пример.

Теорема 2 Если функция строго монотонна на отрезке, то есть возрастает или убывает на, то на этом отрезке уравнение не может иметь более одного корня.

Доказательство сразу следует из того, что строго монотонная функция принимает каждое своё значение ровно один раз. Если 0 является значением функции, то и значение 0 принимается один раз, то есть уравнение имеет один корень.

Тем самым, если отрезок, на котором заведомо имеется хотя бы один корень (например, если и — разного знака), — это отрезок строгой монотонности функции, то на отделён ровно один корень.

Заметим, что интервалы монотонности функции можно отыскивать, решая неравенства (что соответствует возрастанию функции) и (что соответствует убыванию).

Заключение

Исаак Ньютон доказал существование тяготения как универсальной силы силы, которая одновременно заставляла камни падать на Землю и была причиной замкнутых орбит, по которым планеты вращались вокруг Солнца. Заслуга Ньютона была в том, что он соединил механистическую философию Декарта, законы Кеплера о движении планет и законы Галилея о земном движении, сведя их в единую всеобъемлющую теорию.

Закон всемирного тяготения не только завершил гелиоцентрическое представление о Солнечной системе, но и дал научную основу для объяснения большого числа процессов, происходящих во всей Вселенной, в том числе физических и химических процессов, став основой физической картины мира.

Механистическая картина мира основывалась на следующих принципах: связь теории с практикой; использование математики; эксперимент реальный и мысленный; критический анализ и проверка данных; главный вопрос — как, а не почему; детерминированность и обратимость траекторий.

Стимулирующее воздействие на естествознание новых потребностей техники привело к тому, что в начале ХХ в. началась новейшая революция в естествознании, прежде всего, в физике, где был сделан целый ряд ошеломляющих открытий, разрушивших всю ньютоновскую космологию См.: Ньютон и философские проблемы физики XX века. — М.: Наука, 1991. — С. 88.. Сюда относятся открытия радиоактивного распада Э. Резерфордом, светового давления П.Н. Лебедевым, создание теории относительности А. Эйнштейном, изобретение радио А.С. Поповым, введение идеи кванта М. Планком.

Обращаясь к современной науке, нужно отметить, что даже беглое сравнение ее и науки предшествующих эпох обнаруживает разительные перемены. Ньютон, как ученый классической эпохи, вряд ли бы принял идеи и методы, например, квантовомеханического описания, поскольку он считал недопустимым включать в теоретическое описание и объяснение ссылки на наблюдателя и средства наблюдения. Такие ссылки воспринимались бы в классическую эпоху как отказ от идеала объективности. Вместе с тем, механика Ньютона и по сей день не потеряла своего значения, только стало ясно, что существуют границы ее применимости.

Список литературы

1.Идеи и наш мир: Великие концепции прошлого и настоящего / Под ред. Р. Стюарта. — М.: ББМ АО, ТЕРРА — книжный клуб, 1998. — 224 с.

2.Кефели И.Ф. История науки и техники. — СПб.: Балт. гос. техн. ун-т, 1995. — 170 с.

3.Ньютон и философские проблемы физики XX века. — М.: Наука, 1991. — 205 с.

4.Родякин С.В., Ситников А.Н. Основные предпосылки и идеи становления и развития классической механики Галилея и Ньютона // Философия науки (научное издание по философии, методологии и логике естественных наук). — 2003. — №1. — С. 45-51.

5.Серополова Е.Я. Межпредметные связи и формирование естественнонаучных понятий при обучении физике в основной школе // Физика в школе. — 2007. — №3. — С. 22-27.

6.Степин В.С., Горохов В.Г., Розов М.А. Философия науки и техники. — М.: Гардарина, 1996. — 400 с.

7.Тяготение. От Аристотеля до Эйнштейна / В.Д. Захаров. — М.: Бином. Лаборатория знаний, 2003. — 278 с., илл.