Теория вероятностей задачи с решением и примерами

Оглавление:

Теория вероятностей задачи с решением

Прежде чем изучать готовые решения задач по теории вероятности, нужно знать теорию, поэтому для вас я подготовила краткую теорию по предмету «теория вероятностей», после которой подробно решены задачи.

Эта страница подготовлена для школьников и студентов.

Если что-то непонятно — вы всегда можете написать мне в WhatsApp и я вам помогу!

Введение в теорию вероятностей

Прежде чем переходить к строгим определениям основных понятий теории вероятностей, мы рассмотрим несколько простых и в то же время типичных ситуаций, призванных проиллюстрировать идейную сторону дальнейшего изложения.

Схема случаев

Потребность в теоретико-вероятностных методах, как правило, возникает в ситуации, когда исход изучаемого явления по тем или иным причинам не может быть однозначно спрогнозирован. Одной из простейших моделей такого сорта ситуаций может служить схема случаев. Под схемой случаев мы понимаем такую ситуацию, когда, во-первых, множество возможных исходов рассматриваемого эксперимента образует конечную совокупность, а во-вторых, каждый из исходов имеет такие же шансы на осуществление, как и любой другой. При этом предполагается, что исследуемое явление может наблюдаться в идентичных условиях неограниченное число раз — эксперимент обладает свойством повторяемости. Очевидно, что в этом случае шансы на осуществление того или иного исхода в каждом отдельно взятом эксперименте тем меньше, чем больше самих исходов, а шансы на осуществление какой-либо группы исходов пропорциональны количеству исходов в рассматриваемой группе.

Пример 1. Рассмотрим эксперимент, состоящий в подбрасывании монеты. Пренебрегая «нештатными» возможностями — монета стала на ребро, закатилась в щель, прилипла к потолку и т. п. — будем считать, что возможные исходы этого эксперимента — это выпадение герба или решетки (решки). Если предположить дополнительно, что монета является физически симметричной и что эксперимент производится «честно», то мы получим простейший пример схемы случаев с двумя равновозможными исходами. Заметим, что если монета несимметрична, то рассмотренный эксперимент схемой случаев в нашем понимании описан быть не может, так как исходы уже не будут обладать свойством равновозможности.

Пример 2. Пусть в урне лежит N физически идентичных шаров, пронумерованных от 1 до N. Эксперимент состоит в извлечении шара из урны, возможный исход однократного извлечения — любой номер от 1 до N. Если шары тщательно перемешаны и извлекаются из урны наугад, то мы имеем пример схемы случаев с N равновозможными исходами.

Вероятность исхода. Событие. Вероятность события

Для описания возможности осуществления того или иного исхода в схеме случаев введем количественную характеристику указанной возможности — вероятность исхода, которую определим как величину, обратно пропорциональную общему количеству N равновозможных при однократном проведении эксперимента исходов:

Теория вероятностей


где к — некоторый коэффициент пропорциональности

Для того чтобы понять, каким он должен быть, введем понятие события, которое может (или не может) осуществляться в эксперименте:

Событием в эксперименте, описываемом схемой случаев, назовем любую совокупность исходов рассматриваемого эксперимента.

Мы будем говорить, что событие осуществилось, если в результате однократного проведения эксперимента реализовался один из составляющих это событие исходов.

Пример 3. Рассмотрим эксперимент, состоящий в извлечении ровно одной карты из тщательно перетасованной колоды, содержащей 36 карт. Этот эксперимент может быть описан схемой случаев с 36 равновозможными исходами.

Примерами событий в рассматриваемой ситуации могут служить следующие:
Теория вероятностей = {извлеченная карта имеет масть пик}. Это событие состоит из всех (9) пиковых карт. Оно осуществляется (происходит) в эксперименте, если мы извлекли из колоды любую пиковую карту.
— Десятка = {извлеченная карта — десятка}. Это событие состоит из всех (4) карт с изображением десятки. Оно происходит, если мы извлекли из колоды любую десятку.
— Картинка = {извлеченная карта — валет, дама, король или туз}.

Если у нас есть пара событий А и В, то можно сконструировать из них новые события, пользуясь следующими простыми правилами действий:

Суммой двух событий А и В назовем событие, происходящее, если происходит либо событие А, либо событие В, либо оба эти события одновременно. Легко понять, что сумма событий составляется из всех исходов входящих либо в А, либо в В, при этом общие исходы (т. е. входящие одновременно и в Л, и в В) входят в сумму однократно.

Обозначение для суммы: A U В.

Пример 4. В описанном выше эксперименте с извлечением одной карты из 36-листовой колоды суммой событий А = {извлеченная карта масти пик} = {6Теория вероятностей,…, ТТеория вероятностей} и В = {извлеченная карта — король} = {КТеория вероятностей, КТеория вероятностей, КТеория вероятностей, КТеория вероятностей} будет событиеТеория вероятностей, состоящее в извлечении карты масти пик или любого короля.

Совмещением (произведением) двух событий А и В назовем событие, происходящее, если события Л и В осуществляются одновременно.

Совмещение событий состоит из всех общих для событий А и В исходов.

Обозначение для совмещения: Теория вероятностей Чаще всего знак совмещения Теория вероятностей опускают, обозначая совмещение событий А • В = АВ.

Если у событий отсутствуют общие исходы, то такие события вместе не происходят. Они называются несовместными. При сложении несовместных событий обычно используется значок «+» вместо значка объединения Теория вероятностей — сумма обозначается в этом случае как А + В.

Пример 5. В описанном выше эксперименте совмещением событий А и В будет событие, состоящее в извлечении короля пик.

Здесь же события Теория вероятностей и Теория вероятностей — несовместны.

Отрицанием события А или событием, противоположным событию А, назовем событие, происходящее, когда событие А не происходит. Отрицание (противоположное событие) состоит из всех тех исходов эксперимента, которые не входят в А.

Обозначение для отрицания (противоположного события): Теория вероятностей

Пример 6. В описанном выше эксперименте отрицанием события В будет событие, состоящее в извлечении любой карты, не являющейся королем.

Рассмотрим теперь событие, которое в дальнейшем будем обозначать буквой Теория вероятностей, составленное из всех исходов рассматриваемого эксперимента. Очевидно, что при любой реализации эксперимента какой-нибудь исход обязательно осуществится, а следовательно, осуществится событие Теория вероятностей, что дает основание назвать это событие достоверным. Оно происходит всегда, когда проводится эксперимент. Пополним множество возможных в рассматриваемом эксперименте событий событием невозможным, которое в данном эксперименте не происходит. Невозможное событие будем обозначать символом Теория вероятностей.

Легко понять, что если мы имеем дело со схемой случаев с N равновозможными исходами, то общее количество всех событий в рассматриваемом эксперименте равно Теория вероятностей.

◄ Действительно, событий, состоящих ровно из одного исхода, будет N, из двух исходов — Теория вероятностей, и вообще, событий, состоящих из S исходов, будет Теория вероятностей. Таким образом, число возможных событий равно

Теория вероятностей

если добавить теперь к этому количеству еще одно — невозможное — событие, получим искомый результат, так как известно, что

Теория вероятностей

откуда и следует искомое. ►

Отметим несколько очевидных соотношений:

Теория вероятностей

Естественно под вероятностью события понимать величину, пропорциональную количеству входящих в него исходов — если некоторое событие составлено S исходами, то его вероятность положим равной

Теория вероятностей

При этом ясно, что чем больше исходов входят в событие (говорят — благоприятствуют осуществлению события), тем больше шансы на его осуществление, как следствие — тем больше его вероятность. Все события, осуществляющиеся в эксперименте, с точки зрения шансов на осуществление естественно располагаются между невозможным и достоверным событиями.

Вероятность невозможного события положим равной нулю, отмечая тем самым, что шансов на осуществление невозможного события нет.

Вероятность достоверного события может быть принята равной любому положительному числу — никаких запретов или ограничений на это значение нет. Так как достоверное событие включает все возможные исходы, то его вероятность больше вероятности любого другого события в этом эксперименте и равна, в силу (2), сумме вероятностей всех исходов, т. е. Теория вероятностейТаким образом, коэффициент пропорциональности в соотношении (1) равен вероятности достоверного события.

Поскольку выбор значения вероятности достоверного события не влияет на содержательную сторону описания возможности осуществления того или иного исхода в схеме случаев, а меняет только масштаб шкалы измерения вероятностей, положим

Теория вероятностей

и, тем самым, завершим определение вероятностей исхода и события в схеме случаев.

Суммируя вышеизложенное, еще раз отметим, что все события, происходящие в эксперименте, могут быть естественным образом ранжированы в соответствии с их шансами на осуществление при однократной реализации эксперимента. В этой ранжировке они располагаются между невозможным событием, которое не происходит никогда, и достоверным, которое реализуется всегда, когда реализуется эксперимент.

Мерой осуществимости любого события А выступает его вероятность, определяемая как отношение количества S благоприятствующих осуществлению события исходов к общему числу N всех возможных исходов:

Теория вероятностей

Отметим некоторые свойства вероятности события в схеме случаев.

1. Вероятность любого события, происходящего в рассматриваемом эксперименте, задается положительным числом, заключенным в пределах между 0 и 1

Теория вероятностей

2. Если события А и В — несовместны, то вероятность суммы равна сумме вероятностей

Теория вероятностей

в частности, справедлив так называемый принцип дополнительности

Теория вероятностей

Рассмотрим несколько примеров, иллюстрирующих технику нахождения вероятностей событий в схеме случаев.

Пример 7. Пусть в урне лежит m+n физически идентичных шаров, окрашенных соответственно в белый (n шаров) и черный (m шаров) цвета. Эксперимент состоит в извлечении из урны одного шара. Найдем вероятность извлечения шара белого цвета

Теория вероятностей Поскольку всего возможных исходов N = m + n, а благоприятствующих извлечению белого шара — п, то искомая вероятность дается отношением n/(m + n). ►

Пример 8. В условиях предыдущего примера производится извлечение двух шаров. Какова вероятность того, что оба извлеченных шара — белые? Извлечены разноцветные шары?

Теория вероятностей Ответ на первый вопрос задачи может быть получен, например, с помощью следующих рассуждений.

Всего различных пар шаров из урны, содержащей m + n физически идентичных шаров, можно составить Теория вероятностей, так что можно считать, что всего различных исходов в рассматриваемом эксперименте Теория вероятностей. В то же время количество пар белых шаров дается числом Теория вероятностей, откуда искомая вероятность равна

Теория вероятностей

Аналогичные соображения для второго вопроса дают.

Теория вероятностей

Заметим, что рассматриваемый эксперимент — извлечение пары шаров — эквивалентен двукратному последовательному извлечению шаров из урны.

Пример 9. В условиях предыдущего примера производится последовательное извлечение двух шаров с возвращением каждого извлеченного шара обратно в урну. Какова вероятность того, что оба извлеченных шара — белые’ Извлечены разноцветные шары?

Теория вероятностей В отличие от предыдущей ситуации, общее количество возможных исходов в рассматриваемом эксперименте будет уже равно Теория вероятностей, а количество S исходов, благоприятствующих интересующему нас событию (оба шара — белые) — Теория вероятностей, и, следовательно, искомая вероятность равна

Теория вероятностей

Аналогичные рассуждения для второго вопроса дают:

Теория вероятностей

Пример 10. Ребенок, играя с четырьмя карточками разрезной азбуки, на которых изображены буквы А, А, М, М, случайным образом выкладывает их в ряд. Какова вероятность того, что у него получится слово МАМА?

Теория вероятностей Предполагая, что все возможные расстановки четырех карточек в ряд равновозможны, получаем схему случаев с общим количеством исходов N = 4! = 24. Количество исходов, благоприятствующих интересующему нас событию, равно S = 4, откуда искомая вероятность равна 4/24 =1/6. ►

Пример 11. Студент подготовил к экзамену 40 из 50 вопросов, охватывающих программу изученного курса. На экзамене ему предлагается дать ответ на два случайным образом выбранных из общего списка вопроса. Какова вероятность того, что студент знает ответ на оба предложенных ему вопроса?

Теория вероятностей Легко видеть, что всего различных вариантов выбора пары различных вопросов из общего списка, содержащего 50 вопросов, будет Теория вероятностей. Интересующее нас событие состоит из таких пар вопросов, оба из которых известны студенту. Их количество Теория вероятностей Таким образом, искомая вероятность дается отношением

Теория вероятностей

Пример 12. В урне лежит всего 10 черных и белых шаров. Из урны извлекают без возвращения пару шаров. Известно, что вероятности извлечения одноцветных шаров относятся как 2 : 5. Можно ли по этим данным установить состав шаров в урне?

Теория вероятностей Пусть в урне лежит п белых (черных) (соответственно, 10 — n черных (белых)) шаров. Тогда вероятность извлечения из урны пары белых (черных) шаров будет равна

Теория вероятностей

аналогично, пары черных (белых) шаров

Теория вероятностей

Из условия задачи следует

Теория вероятностей

откуда для n получаем уравнение

Теория вероятностей

единственное целое положительное решение (n = 4) которого дает ответ — в урне возможно наличие 4 белых и 6 черных, либо 4 черных и 6 белых шаров. ►

Пример 13. В урне лежит некоторое количество белых и черных шаров, так что вероятность извлечения пары белых шаров равна 0,5. Какое минимально возможное количество шаров находится в урне? Каков при этом состав шаров в урне?

Теория вероятностей Пусть в урне лежит всего N шаров, из которых n < N — белые. Вероятность извлечения пары белых шаров (см. предыдущий пример) дается соотношением

Теория вероятностей

и условие задачи приводит к уравнению, связывающему N и n

Теория вероятностей

Учитывая, что величины n и N — целые положительные числа, удовлетворяющие условию n < N, выразим из этого соотношения п через N

Теория вероятностей

и, придавая величине N последовательно значения 1, 2,… , найдем, что наименьшее значение N, при котором n — целое положительное, равняется 4. Значение n при этом равно 3. ►

Пример 14. Среди выпущенных N лотерейных билетов n — выигрышных. Некто приобрел r < N — n лотерейных билетов. Какова вероятность того, что среди них по крайней мере один выигрышный?

Теория вероятностей Заметим, что событие А = {среди приобретенных r билетов по крайней мере один выигрышный} противоположно событию Теория вероятностей= {среди приобретенных r билетов выигрышных нет}. Для решения задачи воспользуемся принципом дополнительности: Теория вероятностей

Найдем вероятность Теория вероятностей. Всего возможных исходов (т. е. различных наборов из r лотерейных билетов) Теория вероятностей, среди них таких, которые не содержат ни одного выигрышного билета —Теория вероятностей. Для вероятности Теория вероятностей получаем

Теория вероятностей

откуда искомая вероятность дается соотношением

Теория вероятностей

Пример 15. Среди выпущенных N лотерейных билетов n — выигрышных. Некто приобрел r < min{n, N — n} лотерейных билетов. Какова вероятность того, что среди них ровно k выигрышных?

Теория вероятностей Как и выше, всего возможных исходов (т. е. различных наборов из r лотерейных билетов) будет Теория вероятностей. Набор, содержащий ровно k выигрышных билетов, образуется в результате объединения любых k выигрышных билетов с любыми r — k невыигрышными. Количество различных наборов из к выигрышных билетов равно Теория вероятностей, количество различных наборов из r — k невыигрышных билетов равно Теория вероятностей. Следовательно, количество различных комбинаций из выигрышных и невыигрышных билетов дается числом Теория вероятностей, а искомая вероятность равна

Теория вероятностей

Геометрические вероятности

Другая схема описания экспериментов с неоднозначно прогнозируемыми исходами, которая позволяет довольно просто ввести количественную характеристику осуществимости того или иного события — это схема геометрических вероятностей, которая , как и рассмотренная выше схема случаев, эксплуатирует идею о равновозможности исходов эксперимента.

Аналогично тому, как это было проделано в схеме случаев, количественная характеристика осуществимости события — его вероятность — определяется как нормированная некоторым образом величина, пропорциональная запасу исходов, благоприятствующих осуществлению события.

Пусть множество исходов исследуемого эксперимента может быть описано как множество Теория вероятностей точек некоторого «геометрического континуума» — каждому исходу соответствует некоторая точка и каждой точке отвечает некоторый исход. В качестве «геометрического континуума» Теория вероятностей может выступать отрезок на прямой, дуга спрямляемой кривой на плоскости или в пространстве, квадрируемое множество на плоскости (треугольник, прямоугольник, круг, эллипс и т. п.) или часть квадрируемой поверхности, некоторый объем в пространстве (многогранник — призма, пирамида, шар, эллипсоид и т. п.)

Событием назовем любое квадрируемое подмножество множества Теория вероятностей.

Как и в схеме случаев, событие состоит из точек-исходов, однако уже не любая совокупность исходов образует событие, атолькотакая, меру которой (длину, площадь, объем) мы можем измерить.

Предполагая равновозможность исходов, назовем вероятностью события А число, пропорциональное мере подмножества А множества Теория вероятностей:

Теория вероятностей

Если Теория вероятностей — событие, невозможное в данном эксперименте, a Теория вероятностей — достоверное, то положим Теория вероятностейВероятность любого события А будет при этом заключена между нулем — вероятностью события невозможного, и единицей — вероятностью события достоверного. Условие нормировки позволяет найти константу k — коэффициент пропорциональности, задающий вероятность. Он оказывается равен Теория вероятностей.

Таким образом, в схеме геометрических вероятностей вероятность любого события определяется как отношение меры подмножества А, описывающего событие, к мере множества Теория вероятностей, описывающего эксперимент в целом:

Теория вероятностей

Отметим некоторые свойства так определенной вероятности:

  1. Теория вероятностей
  2. Если Теория вероятностей

◄ Свойство очевидно следует из того обстоятельства, что множество, содержащееся внутри другого, не может быть больше последнего. ►

Как и в схеме случаев, события в схеме геометрических вероятностей можно объединять, совмещать и строить на их основе противоположные — при этом будут получаться, вообще говоря, отличные от исходных события. Следующее свойство весьма важно.

Если события А и В — несовместны, то Р(А U В) = Р(А)+Р(В), в частности, справедлив принцип дополнительности: Теория вероятностей

◄ Это свойство, называемое обычно правилом сложения вероятностей, очевидно следует из аддитивности меры. ►

В заключение отметим, что вероятность осуществления любого исхода в схеме геометрических вероятностей всегда равна нулю, равно как равна нулю вероятность любого события, описываемого «тощим» множеством точек, т. е. множеством, мера которого (соответственно — длина, площадь, объем) равна нулю.

Рассмотрим несколько примеров, иллюстрирующих вычисление вероятностей в схеме геометрических вероятностей.

Пример 1. Эксперимент состоит в случайном выборе точки из отрезка [а, b]. Найти вероятность того, что выбрана точка, лежащая в левой половине рассматриваемого отрезка.

◄ По определению, вероятность выбора точки из любого множества на отрезке [а, b] пропорциональна длине этого множества. Следовательно, искомая вероятность равна 0,5:

Теория вероятностей

Пример 2. Эксперимент состоит в случайном выборе точки Теория вероятностей из квадрата Теория вероятностей Какова вероятность того, что уравнение

Теория вероятностей

имеет действительные корни? Равные корни?

Теория вероятностей Хорошо известно, что у квадратного уравнения корни действительны, если его дискриминант неотрицателен. В рассматриваемом случае дискриминант D дается соотношением

Теория вероятностей

и будет неотрицателен, если Теория вероятностей удовлетворяют условию

Теория вероятностей

т е если точка Теория вероятностей будет выбрана из множества А, являющегося пересечением квадрата К и множества точек, описываемого вышеприведенными условиями (рис. 1).

Теория вероятностей

Следовательно, для искомой вероятности получаем:

Теория вероятностей

Далее, корни квадратного уравнения совпадают, если D = 0. Этому значению дискриминанта отвечает отрезок оси Теория вероятностей от — 1 до +1 и отрезок биссектрисы первого и третьего координатного угла, лежащий внутри квадрата К (рис. 1). Легко понять, что площадь этого множества точек равна нулю и, следовательно, вероятность совпадения корней рассматриваемого уравнения равна нулю. ►

Следующий пример является классическим и призван проиллюстрировать то простое соображение, что понятие «случайности» не является очевидным и одинаково понимаемым всеми, а потому должно быть, вообще говоря, аккуратно формализовано, иначе использование вероятностных соображений может привести к недоразумениям.

Пример 3. В круге радиуса R случайным образом выбрана хорда. Какова вероятность того, что длина этой хорды больше радиуса?

◄ В первую очередь следует понять, что значит хорда выбрана случайно.

1. Поскольку длина хорды однозначно определяется расстоянием этой хорды от центра круга, то одна из возможных интерпретаций случайного выбора может выглядеть так:

Случайный выбор хорды эквивалентен случайному выбору точки на диаметре круга.

Длина хорды, находящейся на расстоянии d от центра, равна Теория вероятностей, и для того чтобы длина хорды превышала длину радиуса круга, нужно, чтобы выбранная точка была расположена от центра круга на расстоянии, не превышающем Теория вероятностей (рис. 2)

Поэтому искомая вероятность раана

Теория вероятностей
Теория вероятностей

2. Всякая хорда может быть задана парой точек на окружности, являющихся ее концами. Поэтому другая интерпретация случайного выбора хорды может быть сформулирована так.

Случайный выбор хорды эквивалентен случайному выбору пары точек на дуге окружности.

Теория вероятностей

Выбирая на окружности начало отсчета и задавая направление обходе (например, против часовой стрелки), пометим положение любой точки на окружности ее координатой, меняющейся в пределах от 0 до Теория вероятностей. Множество хорд может быть описано множеством упорядоченных пар чисел (x, у), Теория вероятностей — координат начала и конца каждой из хорд (рис. 3, слева). Это множество на плоскости координат (x, у) изображается треугольником ОАВ (рис. 3, справа). Понятно, что длина хорды будет больше радиуса, если координаты начала и конца хорды удовлетворяют условиям

Теория вероятностей

Последние могут быть записаны одним двойным неравенством

Теория вероятностей

Множество точек (х,у), удовлетворяющих этому условию, заштриховано на рис. 3 (справа). Теперь легко находим

Теория вероятностей

и искомая вероятность равна

Теория вероятностей

что отличается от результата, полученного выше. ►

Условные вероятности. Взаимное влияние и независимость

Информация о реализации некоторого события в эксперименте может менять наши представления о шансах на осуществление других событий.

Пример 1. Пусть в эксперименте с бросанием симметричной монеты рассматриваются события Г — выпадение герба и Р — выпадение решки. Очевидно, что если нам известно: выпал герб, т. е. осуществилось событие Г, то осуществление события Р — выпадение решки в этом эксперименте невозможно.

Пример 2. Если в эксперименте с извлечением карты извлечена карта КТеория вероятностей, то очевидно, что одновременно осуществились события Теория вероятностей = {извлечена карта масти пик} и К = {извлечен король}. Другими словами, осуществление события КТеория вероятностей влечет за собой осуществление и этих событий.

Но, конечно, может оказаться и так, что осуществление одного из событий в эксперименте ничего не говорит нам об осуществлении или неосуществлении другого, точнее, не меняет наших представлений о шансах на его осуществление.

Пример 3. Рассмотрим эксперимент, состоящий в двукратном извлечении шаров из урны с последующим возвращением извлеченного шара обратно в урну. Пусть в урне лежит N = m + n соответственно черных (m) и белых (n) шаров. Рассмотрим события: А — шар, извлеченный первым, белый, В — шар, извлеченный вторым, белый. Поскольку после каждого извлечения шар возвращается в урну, то ясно, что зависимости между этими событиями нет.

Из общих соображений понятно, что при условии осуществления одного из событий шансы на осуществление другого должны быть пропорциональны запасу их общих исходов — чем значительнее общая часть рассматриваемых событий, тем выше должны быть шансы на осуществление одного из них, в предположении, что другое произошло.

Введем соответствующее формальное понятие.

Условной вероятностью осуществления события А относительно события В назовем число

Теория вероятностей

где Теория вероятностей —запас исходов эксперимента, благоприятствующих осуществлению соответственно событий Теория вероятностей

Пусть событие В фиксировано и таково, что Р(В) > 0. Тогда условная вероятность обладает следующими очевидными свойствами:

1. Теория вероятностей

2. Если события А и В — несовместны, то Р(А|В) = 0, если же события А и В таковы, что В составляет часть А, то Р(А|В) = 1, в частности Р(В|В) = 1.

3. Для условных вероятностей справедливо правило сложения

Теория вероятностей

если только события Ai и А2 несовместны.

Таким образом, условная вероятность обладает всеми свойствами вероятности и описывает шансы на осуществление события А при уже происшедшем событии В. Очевидно, что, вообще говоря, Теория вероятностей

Сразу же заметим, что условная вероятность может быть вычислена как отношение вероятности совместного осуществления событий А и В к вероятности события-условия В:

Теория вероятностей

Из последнего соотношения следует правило умножения вероятностей

Теория вероятностей

справедливое для событий с положительной вероятностью.

Рассмотрим несколько примеров, иллюстрирующих введенное понятие.

Пример 4. Из урны, содержащей n белых и m черных шаров, извлекают без возвращения пару шаров. Какова вероятность извлечь вторым черный шар, если известно, что первым был извлечен черный?

Теория вероятностей Очевидно, что если первым был извлечен черный шар, то в урне осталось всего n+m— 1 шаров, m — 1 среди которых черных m — 1. Поэтому искомая вероятность равна Теория вероятностей

Пример 5. Эксперимент состоит в случайном выборе точки из квадрата Теория вероятностей. Найти вероятность того, что первая координата точки не превышает 0,5, если известно, что выбрана точка, лежащая выше биссектрисы первого и третьего координатных углов (рис. 4).

◄ Из рисунка легко усмотреть, что вероятность события В = {выбрана точка, лежащая выше биссектрисы} равна 0,5, а вероятность совместного осуществления событий В и Теория вероятностейТеория вероятностей. Отсюда для искомой вероятности получаем: Р(A|В) = 3/4. ►

Теория вероятностей

Понятие условной вероятности позволяет ввести также количественную меру, характеризующую степень влияния одного из событий на другое.

Будем говорить, что событие А не зависит от события В, если осуществление события А не меняет вероятности осуществления события В, т. е. если условная вероятность Р(А|В) совпадает с безусловной Р(А):

Теория вероятностей

В противном случае будем говорить, что событие А зависит от В.

Сразу же отметим, что понятия зависимости-независимости, несмотря на явную несимметричность определения, носят взаимный характер — если событие А зависит (не зависит) от события В, то и событие В зависит (не зависит) от события А.

◄ Действительно, пусть событие А не зависит от события В. Рассмотрим

Теория вероятностей

но, в силу независимости, Р (А|В) = Р (A), откуда и следует независимость В от А. ►

В случае независимых событий правило умножения вероятностей принимает особенно простой вид: вероятность совместного осуществления двух событий равна произведению их вероятностей:

Теория вероятностей

Соотношение (5) может быть принято в качестве определения независимости.

Нижеследующие примеры иллюстрируют использование правила умножения при вычислении вероятностей событий.

Пример 6. Из урны, содержащей п белых и т черных шаров, извлекают три шара. Какова вероятность того, что среди извлеченных есть хотя бы один белый шар?

◄ Заметим, что интересующее нас событие А противоположно событию — все извлеченные шары черные. В соответствии с принципом дополнительности Теория вероятностей Вероятность события Теория вероятностей найдем, воспользовавшись тем, что Теория вероятностей, где события Теория вероятностей означают, что шар, извлеченный і-м — черный. В соответствии с правилом умножения получаем

Теория вероятностей

Для вероятностей, участвующих в этом соотношении, легко получаем

Теория вероятностей

откуда ответ

Теория вероятностей

Пример 7. В круге радиуса R случайным образом независимо друг от друга выбрано N точек. Найти вероятность того, что расстояние от центра круга до ближайшей из них будет не менее r.

◄ Ясно, что если ближайшая из точек находится от центра на расстоянии не меньшем r, то и все прочие будут находиться от центра на не меньшем расстоянии.

Вероятность того, что случайная в круге точка находится от центра на расстоянии не меньшем r, дается отношением

Теория вероятностей

В соответствии с правилом умножения (5), искомая вероятность равна

Теория вероятностей

Пример 8. Некто забыл последнюю цифру номера телефона и набирает ее наугад. Какова вероятность того, что он дозвонится до нужного абонента не более чем за три попытки?

◄ Воспользуемся принципом дополнительности — противоположным рассматриваемому событию А будет событие Теория вероятностей, состоящее в том, что первые три попытки дозвониться до нужного абонента оказались безуспешными. Последовательные попытки дозаониться до нужного абонента Теория вероятностей — зависимые события, так как однажды набранная и не принесшая успеха цифра в дальнейшем уже не набирается. Применим прааило умножения (4):

Теория вероятностей

Для сомножителей очевидно имеем

Теория вероятностей

Отсюда

Теория вероятностей

и для искомой вероятности получаем Теория вероятностей

Пример 9. Исследовать связь между темным цветом глаз у отца (событие Теория вероятностей) и сына (событие Теория вероятностей) на основании следующих данных, полученных при переписи населения Англии и Уэльса в 1891 году.

Темноглазые отцы и темноглазые сыновья Теория вероятностей составляли 5% среди всех обследованных, темноглазые отцы и светлоглазые сыновья Теория вероятностей — 7,9%, светлоглазые отцы и темноглазые сыновья Теория вероятностей — 8,9%, светлоглазые отцы и светлоглазые сыновья Теория вероятностей — 78,2%.

◄ Для оценки исследуемой связи найдем условные вероятности Теория вероятностей и сравним их с соответствующей безусловной Теория вероятностей.

По определению имеем

Теория вероятностей

Условия задачи дают основания для следующей оценки вероятностей

Теория вероятностей

Поскольку очевидно, что Теория вероятностей, постолькуТеория вероятностей Отсюда

Теория вероятностей

В то же время Теория вероятностей. Сравнивая значения условной и безусловной вероятностей, делаем заключение о наличии связи между темным цветом глаз у отца и темным цветом глаз у сына — у темноглазых отцов темноглазые сыновья встречаются почти втрое чаще, чем вообще среди обследованных. Заметим, между прочим, что светлоглазые сыновья у темноглазых отцов встречаются примерно а 6 случаях из Теория вероятностей

Подсчитаем теперь вероятность Теория вероятностей. Рассуждения, аналогичные вышеприведенным, дают:

Теория вероятностей

Заключаем, что светлоглазые отцы, вообще говоря, могут иметь темноглазых сыновей, однако значительно реже, чем светлоглазых — примерно в одном случае из 10 у светлоглазых отцов темноглазые сыновья и, соответственно, в 9 случаях из 10 — светлоглазые. ►

Формула полной вероятности

Введенные в предыдущем разделе понятия условной вероятности и независимости событий позволяют получить простое соотношение, облегчающее вычисление вероятностей в многоальтернативных ситуациях — когда событие, вероятность которого отыскивается, может происходить совместно с другими событиями, относительно которых подсчет вероятностей интересующего нас события оказывается по каким-то причинам проще. Это соотношение носит название формулы полной вероятности.

Пусть события Теория вероятностей имеют ненулевую вероятность, несовместны и вместе исчерпывают все возможные исходы эксперимента:

Теория вероятностей
Теория вероятностей

Совокупность событий, обладающих перечисленными свойствами, задает альтернативное разбиение множества всех исходов эксперимента и обычно называется полной группой несовместных событий.

Если А — некоторое событие, то очевидно, что разбиение эксперимента, задаваемое полной группой событий Теория вероятностей задает и разбиение множества исходов, образующих событие А (рис. 5):

Теория вероятностей

(при этом, конечно, некоторые слагаемые в приведенной сумме могут оказаться невозможными событиями).

Поскольку события Теория вероятностей — несовместны, то и события Теория вероятностейТеория вероятностей — также несовместны, и по правилу сложения заключаем, что

Теория вероятностей

Правило же умножения (4) позволяет вычислить каждое из слагаемых

Теория вероятностей

Объединяя два последних соотношения, получаем искомую формулу

Теория вероятностей

Пример 1. На книжной полке стоит два десятка книг, из которых 4 уже прочитаны хозяином, а оставшиеся еще нет Хозяин выбирает случайным образом книгу и читает (или перечитывает) ее, после чего ставит обратно на полку После этого он выбирает наугад очередную книгу. Какова вероятность того, что вновь выбранная книга еще не была прочитана?

◄ Рассуждения выглядят следующим образом пусть Теория вероятностей — событие, состоящее в том, что первая книга читанная, Теория вероятностей — нечитанная, А — вновь выбранная книга еще не была прочитана

Легко установить, что имеют место следующие соотношения

Теория вероятностей

и формула (6) для искомой вероятности дает

Теория вероятностей

Пример 2. На перегоне между двумя остановками в автобусе едут 3 пассажира, каждый из которых, независимо от прочих, с вероятностью 0,1 покидает автобус на ближайшей остановке. На этой остановке ожидают транспорт 3 пассажира, каждый из которых, независимо от прочих ожидающих, садится в подошедший автобус с вероятностью 0,3. Какова вероятность того, что после отправления с этой остановки количество пассажиров в салоне автобуса не изменится?

Теория вероятностейОчевидно, что количество пассажиров в салоне автобуса останется неизменным, если количество вышедших будет равно количеству вошедших.

Пусть события Теория вероятностей состоят соответственно в том, что в автобус не сел никто, сел ровно один, два или три пассажира, событие А — количество пассажиров в салоне автобуса не изменилось. По формуле полной вероятности получаем

Теория вероятностей

Учитывая независимость посадки пассажиров в автобус, легко находим

Теория вероятностей

Заметим, что условные вероятности Теория вероятностей есть вероятности того, что из автобуса вышло на остановке ровно г пассажиров.

Теория вероятностей

Окончательно

Теория вероятностей

Формула полной вероятности вместе с формулой условной вероятности позволяет выносить некие суждения о «правдоподобности» гипотез:

Если событие А может происходить в эксперименте совместно с одним из альтернативных событий Теория вероятностей и в результате эксперимента это событие осуществилось, то можно попытаться ответить на вопрос — с каким именно из событий Теория вероятностей оно произошло вместе. Для этого оценим условную вероятность события (гипотезы) Теория вероятностей при условии, что событие А реализовалось:

Теория вероятностей

В соответствии с правилом умножения, вероятность, стоящая в числителе, дается выражением Теория вероятностей, а стоящая в знаменателе может быть подсчитана с помощью формулы полной вероятности (6), что дает

Теория вероятностей

Сравнивая вероятностиТеория вероятностей для различных значений i, будем считать ту из гипотез наиболее вероятной, для которой эта вероятность наибольшая.

Формула (7) называется формулой Бейеса, вероятности Теория вероятностейаприорными, т. е. доопытными вероятностями, вероятности Теория вероятностейапостериорными, т. е. послео-пытными вероятностями.

Пример 3. Из урны, в которой находится 4 белых и 6 черных физически идентичных шаров, извлекли наугад один швр и положили его в урну, содержащую 5 белых и 4 черных шаров. Случайно извлеченный из второй урны шар оказался черным. Что более вероятно — из первой урны был извлечен черный шар или белый?

◄ Пусть событие Теория вероятностей состоит в том, что из первой урны извлечен белый шар, Теория вероятностей — из первой урны извлечен черный шар, Ч — из второй урны извлечен черный шар.

Очевидно, что

Теория вероятностей

Для оценки апостериорной вероятности Теория вероятностей воспользуемся формулой (7):

Теория вероятностей

Полученный результат позволяет считать гипотезу о том, что из первой урны был извлечен белый шар менее предпочтительной в сравнении с гипотезой, предполагающей извлечение из первой урны черного шара. ►

Для содержательного заключения о правдоподобности той или иной гипотезы важно, чтобы рассматриваемые события были действительно случайными в контексте рассматриваемых проблем. В противном случае выводы могут оказаться неадекватными реальному положению дел.

Пример 4. В одном из телевизионных шоу ведущий предлагает игроку выбрать один из стоящих перед ним ларцов, предупреждая, что только в одном из ларцов заключен ценный приз (скажем, ключи от автомобиля). После того как игрок произвел выбор, ведущий открывает один из оставшихся ларцов и, демонстрируя, что в нем ничего нет, предлагает игроку еще раз подумать и, если захочется, изменить свое решение — выбрать оставшийся ларец, вместо того, который был выбран первоначально. Имеет ли смысл игроку менять свое решение?

Теория вероятностей Ответ на вопрос задачи зависит от того, случаен или нет выбор ведущим одного из ларцов для демонстрации его содержимого.

Пусть выбор ведущего случаен. Обозначим через Теория вероятностей событие, состоящее в том, что ларец, выбранный игроком, содержит приз, через Теория вероятностей — что он приза не содержит, через А — что ларец, выбранный ведущим, пуст. Тогда по формуле полной вероятности заключаем, что

Теория вероятностей

А формула Бейеса (7) дает следующую оценку, например, для вероятности Теория вероятностей:

Теория вероятностей

и, следовательно, в этом случае игроку нет нужды менять свой выбор, так как шансы его на получение приза одинаковы, остановится ли он на своем первоначальном выборе или сменит его.

2. Пусть выбор ведущего не случаен, и он, зная где лежит приз, всегда открывает для всеобщего обозрения ларец, приза не содержащий, т. е. событие А не является случайным и происходит с вероятностью 1 В этом случае по формуле условной вероятности заключаем, что

Теория вероятностей

и в двух случаях из трех игроку выгоднее изменить свой выбор, чем настаивать на первоначальном ►

Теория вероятностей

Теория вероятностей – это математическая наука, изучающая закономерности случайных явлений.

Теория вероятностей — раздел математики, в котором изучаются общие закономерности случайных явлений массового характера независимо от их конкретной природы. Она разрабатывает методы количественной оценки влияния случайных факторов на различные явления. Знание этих закономерностей позволяют предвидеть, как эти события будут протекать в реальном опыте.

Элементы комбинаторики

Пусть дано множество Теория вероятностей задачи с решением, состоящее из Теория вероятностей задачи с решением элементов

Теория вероятностей задачи с решением

Перестановками на множестве из Теория вероятностей задачи с решением элементов называются всякие упорядоченные множества, состоящие из этих Теория вероятностей задачи с решением элементов. Количество всех перестановок на множестве из Теория вероятностей задачи с решением элементов обозначается Теория вероятностей задачи с решением и определяется по формуле

Теория вероятностей задачи с решением

Таким образом, перестановки одинаковы по составу элементов, но различаются порядком их перечисления.

Размещениями на множестве из Теория вероятностей задачи с решением элементов по Теория вероятностей задачи с решением элементов называются всякие упорядоченные подмножества, состоящие из Теория вероятностей задачи с решением элементов. Два различных размещения отличаются либо составом элементов, либо их порядком. Число размещений на множестве из Теория вероятностей задачи с решением элементов по Теория вероятностей задачи с решением элементов обозначается Теория вероятностей задачи с решением и определяется формулой

Теория вероятностей задачи с решением

Сочетаниями из Теория вероятностей задачи с решением различных элементов но Теория вероятностей задачи с решением элементов называется подмножество, состоящее из Теория вероятностей задачи с решением элементов, каждый из которых встречается один раз. Два различных сочетания отличаются хотя бы одним элементом. Число сочетаний па множестве из Теория вероятностей задачи с решением элементов по Теория вероятностей задачи с решением элементов обозначается Теория вероятностей задачи с решением и определяется формулой

Теория вероятностей задачи с решением

Если среди Теория вероятностей задачи с решением элементов одного вида есть Теория вероятностей задачи с решением, второго вида — Теория вероятностей задачи с решением и т.д., то, поменяв местами элементы одного вида, получим ту же перестановку. Поэтому число перестановок с повторениями определяется формулой

Теория вероятностей задачи с решением

где

Теория вероятностей задачи с решением

Число размещений на множестве из Теория вероятностей задачи с решением элементов по Теория вероятностей задачи с решением элементов с повторениями определяется формулой

Теория вероятностей задачи с решением

Возможно эта страница вам будет полезна:

Предмет теория вероятностей и математическая статистика

Задача №1

Имеется множество, состоящее из 5 цифр Теория вероятностей задачи с решением. Сколько различных пятизначных чисел можно составить из этих цифр?

Решение:

Так как пятизначные числа отличаются только порядком следованием цифр в числе, то количество различных пятизначных чисел будет равно количеству перестановок на множестве из 5 элементов

Теория вероятностей задачи с решением

Задача №2

Студентам нужно сдать пять экзаменов за 20 дней. Сколькими способами можно составит ь расписание экзаменов.

Решение:

Расписание определяется датами (пять дат) проведения экзаменов и последовательностью дисциплин, по которым они проводятся. Поэтому число различных вариантов расписаний экзаменов будет равно количеству размещений па множестве из 20 элементов по 5 элементов

Теория вероятностей задачи с решением

Задача №3

Из команды, состоящей из 10 человек, выбирают 4 кандидатов для эстафеты 4×100 м. Сколькими способами это можно сделать?

Решение:

Число различных комбинаций из 10 членов команды для участия в эстафете

4 кандидатов будет равно количеству сочетаний на множестве из 10 элементов по 4 элемента

Теория вероятностей задачи с решением

Задача №4

Имеется слово КОЛОКОЛ. Сколько различных слов можно составить из букв этого слова?

Решение:

В слово буквы входят с повторениями. Поэтому количество различных перестановок определяется по формуле (1.4)

Теория вероятностей задачи с решением

Определении вероятности

Пусть проводится случайный эксперимент. Элементарным событием или исходом в случайном эксперименте называется всякая конкретная реализация этого эксперимента. Множество всех исходов эксперимента образует пространство элементарных исходов. Случайным событием называется всякое подмножество пространства элементарных исходов.

Исход называется благоприятствующим событию Теория вероятностей задачи с решением, если появление исхода влечет появление события Теория вероятностей задачи с решением.

Пусть случайный эксперимент имеет Теория вероятностей задачи с решением равновозможных элементарных исходов.

Классическое определение вероятности. Вероятностью события Теория вероятностей задачи с решением называется отношение числа исходов, благоприятствующих событию Теория вероятностей задачи с решением к общему числу всех единственно возможных и равновозможных элементарных исходов опыта

Теория вероятностей задачи с решением

где Теория вероятностей задачи с решением число исходов, благоприятствующих событию Теория вероятностей задачи с решением; Теория вероятностей задачи с решением число всех равновозможных исходов.

Относительной частотой события Теория вероятностей задачи с решением называется отношение числа испытаний, в которых наступило событие Теория вероятностей задачи с решением, к общему числу проведенных испытаний

Теория вероятностей задачи с решением

где Теория вероятностей задачи с решением — общее число проведенных испытаний; Теория вероятностей задачи с решением — число испытаний, в которых наступило событие Теория вероятностей задачи с решением.

При неограниченном увеличении числа испытаний относительная частота события Теория вероятностей задачи с решением стремится к вероятности наступления события в отдельном испытании. На этом факте основано статистическое определение вероятности, когда вероятности полагаются равными относительным частотам событий при большом Теория вероятностей задачи с решением.

Пусть имеется некоторая область Теория вероятностей задачи с решением на плоскости или в пространстве и другая область Теория вероятностей задачи с решением. В область Теория вероятностей задачи с решением случайным образом ставится точка. Нужно найти вероятность того, что она попадет в область Теория вероятностей задачи с решением. Все отборы положения точки в области Теория вероятностей задачи с решением считаются равновозможными. Геометрической вероятностью называется отношение меры области Теория вероятностей задачи с решением к мере области Теория вероятностей задачи с решением

Теория вероятностей задачи с решением

Свойства вероятности

  • Вероятность невозможного события Теория вероятностей задачи с решением равна О
Теория вероятностей задачи с решением
  • Вероятность достоверного события Теория вероятностей задачи с решением равна 1
Теория вероятностей задачи с решением
  • Для любого случайного события Теория вероятностей задачи с решением
Теория вероятностей задачи с решением
  • Вероятность события Теория вероятностей задачи с решением противоположного событию Теория вероятностей задачи с решением определяется по формуле
Теория вероятностей задачи с решением

Задача №5

Набирая номер телефона, абонент забыл последние две цифры и. помня лишь, что эти цифры различны, набрал их наудачу. Найти вероятность того, что набраны нужные цифры.

Решение:

Обозначим через Теория вероятностей задачи с решением событие — {набраны две нужные цифры]. Для определения вероятности события Теория вероятностей задачи с решением будем использовать классическое определение вероятности Теория вероятностей задачи с решением. Всего можно набрать столько различных цифр по две цифры, сколько может быть составлено размещений из десяти цифр по две Теория вероятностей задачи с решением. Благоприятствует событию В только одна пара цифр: Теория вероятностей задачи с решением. Тогда Теория вероятностей задачи с решением.

Задача №6

На девять вакантных мест претендуют 15 кандидатов, из них 7 женщин, остальные мужчины. Какова вероятность того, что из девяти случайно отобранных кандидатов ровно пять женщин.

Решение:

Пусть событие Теория вероятностей задачи с решением состоит в том, что из 9 отобранных кандидатов 5 женщин. Для решения используем классическое определение вероятности. Общее число исходов будет равно числу способов, которыми можно выбрать 9 человек из 15 кандидатов

Теория вероятностей задачи с решением

Число благоприятствующих исходов

Теория вероятностей задачи с решением

Задача №7

В квадрат со стороной Теория вероятностей задачи с решением случайным образом ставится точка. Какова вероятность того, что эта точка попадет в круг, вписанный в этот квадрат.

Решение:

Пусть событие Теория вероятностей задачи с решением состоит в том, что {точка попадет в круг}. Для определения вероятности события Теория вероятностей задачи с решением используем геометрическую вероятность

Теория вероятностей задачи с решением

Теоремы сложения и умножения вероятностей

Теорема сложения. Вероятность суммы двух событий равна сумме вероятностей этих событий без вероятности их совместного появления

Теория вероятностей задачи с решением

Если события Теория вероятностей задачи с решением и Теория вероятностей задачи с решением несовместные, то вероятность суммы несовместных событий равна сумме вероятностей этих событий

Теория вероятностей задачи с решением

Суммой двух событий называется событие, состоящее из элементарных исходов, благоприятствующих либо первому событию, либо второму, либо обоим событиям.

Два события называются несовместными, если они не имеют общих исходов.

Произведением двух событий называется событие, состоящее из элементарных исходов, благоприятствующих и первому, и второму событиям.

Два события называются независимыми, если вероятность появления одного события не зависит от того, произошло или не произошло второе событие.

Условной вероятностью Теория вероятностей задачи с решением называют вероятность события Теория вероятностей задачи с решением, вычисленную в предположении, что событие Теория вероятностей задачи с решением произошло.

Теорема умножения вероятностей. Вероятность произведения двух событий равна произведению вероятностей одного события на условную вероятность второго события при условии, что произошло первое событие

Теория вероятностей задачи с решением

Если события Теория вероятностей задачи с решением и Теория вероятностей задачи с решением независимые, то вероятность произведения двух событий равна произведению вероятностей этих событий

Теория вероятностей задачи с решением

Задача №8

Найти вероятность того, что случайно взятое двузначное число будет кратным двум или пяти.

Решение:

Пусть событие Теория вероятностей задачи с решением состоит в том, что {случайно взятое число будет кратным двум или пяти}; Теория вероятностей задачи с решением — событие, состоящее в том, что {число, кратное двум}; Теория вероятностей задачи с решением — событие, состоящее в том, что {число, кратное пяти}. События Теория вероятностей задачи с решением и Теория вероятностей задачи с решением являются совместными, так как есть числа, которые одновременно делятся на два и пять. Так как Теория вероятностей задачи с решением, то Теория вероятностей задачи с решением. Вычислим вероятности этих событий, воспользовавшись классическим определением вероятности

Теория вероятностей задачи с решением

Тогда

Теория вероятностей задачи с решением

Задача №9

Для подготовки к экзамену студентам дано 60 вопросов. Студент, идя на экзамен, выучил 50 вопросов. Найти вероятность того, что студент сдаст экзамен, если для сдачи экзамена студенту нужно ответить на два вопроса из двух заданных.

Решение:

Пусть событие Теория вероятностей задачи с решением состоит в том, что студент сдаст экзамен. Событие Теория вероятностей задачи с решением = {студент ответил на первый вопрос}, Теория вероятностей задачи с решением = {студент ответил на второй вопрос}. Тогда Теория вероятностей задачи с решением. События Теория вероятностей задачи с решением и Теория вероятностей задачи с решением — зависимые. Применяя теорему умножения вероятностей, мы получаем

Теория вероятностей задачи с решением

Найдем вероятности событий, воспользовавшись классическим определением вероятности

Теория вероятностей задачи с решением

Задача №10

Стрелок делает независимо друг от друга два выстрела по мишеням. Вероятность попадания в мишень при первом выстреле равна 0,7, при втором — 0.9. Найти вероятность того, что при двух выстрелах будет только одно попадание в мишень.

Решение:

Пусть событие Теория вероятностей задачи с решением состоит в том, что {будет только одно попадание при двух выстрелах}, событие Теория вероятностей задачи с решением состоит в том, что {будет попадание при первом выстреле}, событие Теория вероятностей задачи с решением = {попадание при втором выстреле}.

Теория вероятностей задачи с решением

Тогда

Теория вероятностей задачи с решением

Формула полной вероятности. Формулы Баиеса

Пусть событие Теория вероятностей задачи с решением может произойти вместе с одним из событий Теория вероятностей задачи с решением. События Теория вероятностей задачи с решением образуют полную группу попарно несовместных событий, если они: 1) попарно несовместны; Теория вероятностей задачи с решением; 2) сумма событий Теория вероятностей задачи с решением является достоверным событием, то есть Теория вероятностей задачи с решением.

Теорема 4.1. Пусть событие Теория вероятностей задачи с решением может произойти совместно с одним из событий Теория вероятностей задачи с решением которые образуют полную группу попарно несовместных событий. Тогда вероятность события Теория вероятностей задачи с решением определяется по формуле полной вероятности

Теория вероятностей задачи с решением

События Теория вероятностей задачи с решением называются гипотезами.

Теорема 4.2. Пусть событие Теория вероятностей задачи с решением может произойти совместно с одной из гипотез Теория вероятностей задачи с решением Если событие Теория вероятностей задачи с решением произошло, то вероятности появления гипотез вычисляются по формулам Байеса

Теория вероятностей задачи с решением

Задача №11

Электролампы изготавливаются на трех заводах. Первый завод изготавливает 45% общего количества электроламп, второй — 40%, третий — 15%. Продукция первого завода содержит 70% стандартных электроламп, второго — 80%, третьего — 81%. Найти вероятность того, что случайно взятая электролампа будет стандартной.

Решение:

Пусть событие Теория вероятностей задачи с решением состоит в том. что {случайно взятая лампа стандартна). Введем гипотезы Теория вероятностей задачи с решением [лампа произведена на Теория вероятностей задачи с решением заводе]. Вероятность события Теория вероятностей задачи с решением определяется по формуле полной вероятности

Теория вероятностей задачи с решением

Найдем вероятности гипотез:

Теория вероятностей задачи с решением

Условные вероятности будут равны:

Теория вероятностей задачи с решением

Подставив в формулу полной вероятности, получим

Теория вероятностей задачи с решением

Задача №12

В пирамиде 10 винтовок, из них 6 снабжены оптическим прицелом, а остальные винговки — с обыкновенным прицелом. Вероятность попадания в цель из винтовки с оптическим прицелом равна 0,9; из обыкновенной винтовки — 0,7. Стрелок поразил цель из случайно взятой винтовки. Какова вероятность того, что он стрелял из обычной винтовки.

Решение:

Пусть событие Теория вероятностей задачи с решением состоит в том, что стрелок поразил цель, событие Теория вероятностей задачи с решением = {стрелял из обыкновенной винтовки}, событие Теория вероятностей задачи с решением = {из винтовки с оптическим прицелом}.

Теория вероятностей задачи с решением

Из условия задачи

Теория вероятностей задачи с решением

Схема повторных независимых испытаний (схема Бернулли)

Схемой Бернулли называется последовательность из Теория вероятностей задачи с решением независимых испытаний, в каждом из которых возможны только два исхода: событие Теория вероятностей задачи с решением может наступить или не наступить, и вероятность появления события Теория вероятностей задачи с решением в каждом испытании постоянна.

Формула Бернулли. Вероятность того, что в Теория вероятностей задачи с решением независимых испытаниях, в каждом из которых вероятность появления события Теория вероятностей задачи с решением равна Теория вероятностей задачи с решением, событие Теория вероятностей задачи с решением наступит ровно к раз, равна

Теория вероятностей задачи с решением

где

Теория вероятностей задачи с решением

Локальная теорема Муавра-Лапласа. Вероятность того, что в Теория вероятностей задачи с решением независимых испытаниях, в каждом из которых вероятность появления события равна Теория вероятностей задачи с решением, событие наступит ровно Теория вероятностей задачи с решением раз, приближенно равна 1

Теория вероятностей задачи с решением

где

Теория вероятностей задачи с решением

Значения функции Теория вероятностей задачи с решением находятся по таблице по вычисленным значениям Теория вероятностей задачи с решением. Интегральная теорема Муавра-Лапласа. Вероятность того, что в Теория вероятностей задачи с решением независимых испытаниях, в каждом из которых вероятность появления события Теория вероятностей задачи с решением равна Теория вероятностей задачи с решением событие Теория вероятностей задачи с решением наступит от Теория вероятностей задачи с решением до Теория вероятностей задачи с решением раз, приближенно равна

Теория вероятностей задачи с решением

где

Теория вероятностей задачи с решением

Значения функции Теория вероятностей задачи с решением находят по таблице по вычисленным значениям Теория вероятностей задачи с решением. Формула Пуассона. Если в схеме Бернулли число испытаний велико, а вероятность появления события Теория вероятностей задачи с решением мала, то вероятность того, что в Теория вероятностей задачи с решением независимых испытаниях событие Теория вероятностей задачи с решением наступит ровно Теория вероятностей задачи с решением раз приближенно равна

Теория вероятностей задачи с решением

Вероятность отклонения относительной частоты от постоянной вероятности.

Вероятность того, что в Теория вероятностей задачи с решением независимых испытаниях, в каждом из которых вероятность появления события Теория вероятностей задачи с решением равна Теория вероятностей задачи с решением, абсолютная величина отклонения относительной частоты от вероятности появления события Теория вероятностей задачи с решением не превосходит положительного числа Теория вероятностей задачи с решением, приближенно равна

Теория вероятностей задачи с решением

Наивероятнейшее число появлений события в независимых испытаниях

Число Теория вероятностей задачи с решением называют наивероятнейшим, если вероятность того, что в Теория вероятностей задачи с решением независимых испытаниях событие Теория вероятностей задачи с решением наступит ровно Теория вероятностей задачи с решением раз не меньше вероятностей остальных возможных значений Теория вероятностей задачи с решением.

Наивероятнейшее число определяется из неравенства

Теория вероятностей задачи с решением

причем:

а) если число Теория вероятностей задачи с решением дробное, то существует одно наивероятнейшее число; Теория вероятностей задачи с решением, где Теория вероятностей задачи с решением — целая часть числа Теория вероятностей задачи с решением,

б) сели число Теория вероятностей задачи с решением — целое, то существуют два наивероятнейших числа Теория вероятностей задачи с решением и Теория вероятностей задачи с решением;

в) если Теория вероятностей задачи с решением — целое, то Теория вероятностей задачи с решением.

Задача №13

Прибор состоит из четырех узлов. Вероятность безотказной работы каждого узла равна 0,8. Узлы выходят из строя независимо друг от друга. Найти вероятность того, что выйдут из строя росно два узла.

Решение:

Для решения задачи используем формулу Бернулли.

Теория вероятностей задачи с решением

Задача №14

Вероятность поражения мишени при одном выстреле равна 0,8. Найти вероятность того, что при 100 выстрелах мишень будет поражена 75 раз.

Решение:

Решаем задачу с использованием локальной теоремы Лапласа.

Теория вероятностей задачи с решением

Задача №15

В гараже имеется 100 автомашин. Вероятность того, что в течение рабочего дня машина находится вне гаража, равна 0,8. Найти вероятность того, что вне гаража будут находиться от 70 до 85 машин.

Решение:

Для решения используем интегральную теорему Муавра-Лапласа. По условию задачи

Теория вероятностей задачи с решением

тогда

Теория вероятностей задачи с решением

Функция распределения и плотность распределения случайных величин

Краткие теоретические сведения

Случайной величиной Теория вероятностей задачи с решением называется действительная функция Теория вероятностей задачи с решением, определенная на пространстве элементарных исходов Теория вероятностей задачи с решением и такая, что при любых действительных .v определена вероятность события Теория вероятностей задачи с решением.

Функцией распределения вероятностей называется функция Теория вероятностей задачи с решением, равная вероятности того, что Теория вероятностей задачи с решением

Теория вероятностей задачи с решением

Функция распределения обладает следующими свойствами:

  1. Теория вероятностей задачи с решением
  2. Теория вероятностей задачи с решением
  3. Теория вероятностей задачи с решением — неубывающая функция.
  4. Теория вероятностей задачи с решением — непрерывная слева, т.е. Теория вероятностей задачи с решением.
  5. Вероятность попадания Теория вероятностей задачи с решением в интервал Теория вероятностей задачи с решением определяется формулой
Теория вероятностей задачи с решением

Теория вероятностей задачи с решением называется дискретной, если она принимает конечное или счетное количество значений.

Теория вероятностей задачи с решением называется непрерывной на Теория вероятностей задачи с решением, если она принимает все значения из этого интервала.

Законом распределения дискретной Теория вероятностей задачи с решением называется соответствие, но которому каждому возможному значению Теория вероятностей задачи с решением Теория вероятностей задачи с решением ставится в соответствие вероятность его появления Теория вероятностей задачи с решением. Закон распределения дискретной Теория вероятностей задачи с решением записывается в виде таблицы.

Теория вероятностей задачи с решением

Плотностью распределения называется функция Теория вероятностей задачи с решением, удовлетворяющая условию

Теория вероятностей задачи с решением

Плотность распределения обладает следующими свойствами:

Теория вероятностей задачи с решением
Теория вероятностей задачи с решением

Чтобы задать закон распределения непрерывной Теория вероятностей задачи с решением, нужно задать либо плотность распределения, либо функцию распределения.

Задача №16

Закон распределения дискретной Теория вероятностей задачи с решением имеет вид

Теория вероятностей задачи с решением

Найти функцию распределения.

Решение:

По определению Теория вероятностей задачи с решением. Тогда

Теория вероятностей задачи с решением

Задача №17

Непрерывная Теория вероятностей задачи с решением задана плотностью распределения

Теория вероятностей задачи с решением

Нужно определить значение параметра Теория вероятностей задачи с решением и найти Теория вероятностей задачи с решением.

Решение:

Для определения параметра Теория вероятностей задачи с решением воспользуемся свойством плотности распределения

Теория вероятностей задачи с решением
Теория вероятностей задачи с решением

Функцию распределения определим из соотношения Теория вероятностей задачи с решением.

  1. Если Теория вероятностей задачи с решением, то Теория вероятностей задачи с решением.
  2. Если Теория вероятностей задачи с решением. то Теория вероятностей задачи с решением
  3. Если Теория вероятностей задачи с решением, то Теория вероятностей задачи с решением

Таким образом,

Теория вероятностей задачи с решением

Задача №18

Дана функция распределения Теория вероятностей задачи с решением

Теория вероятностей задачи с решением

Требуется найти плотность распределения и вероятность попадания Теория вероятностей задачи с решением в интервал

Теория вероятностей задачи с решением

Решение:

Вероятность попадания Теория вероятностей задачи с решением в интервал Теория вероятностей задачи с решением определяется по формуле

Теория вероятностей задачи с решением

Если известна функция распределенияТеория вероятностей задачи с решением, то Теория вероятностей задачи с решением

Теория вероятностей задачи с решением

Числовые характеристики случайных величин

Пусть дискретная Теория вероятностей задачи с решением имеет следующий закон распределения

Теория вероятностей задачи с решением

Математическим ожиданием Теория вероятностей задачи с решением называется сумма произведений всех возможных значений Теория вероятностей задачи с решением на соответствующие вероятности

Теория вероятностей задачи с решением

Математическое ожидание обладает следующими свойствами:

Теория вероятностей задачи с решением

Математическое ожидание характеризует среднее значение Теория вероятностей задачи с решением.

Для непрерывной Теория вероятностей задачи с решением математическое ожидание вычисляется по формуле

Теория вероятностей задачи с решением

Начальным моментом Теория вероятностей задачи с решением-го порядка называется математическое ожидание Теория вероятностей задачи с решением, т.е. Теория вероятностей задачи с решением. Начальные моменты Теория вероятностей задачи с решением-го порядка для дискретных и непрерывных Теория вероятностей задачи с решением вычисляются соответственно по формулам

Теория вероятностей задачи с решением

Центральным моментом Теория вероятностей задачи с решением-го порядка называется математическое ожидание Теория вероятностей задачи с решением

Теория вероятностей задачи с решением

Для дискретных и непрерывных Теория вероятностей задачи с решением центральный момент Теория вероятностей задачи с решением-го порядка вычисляется по формулам:

Теория вероятностей задачи с решением

Дисперсией Теория вероятностей задачи с решением называется центральный момент второго порядка

Теория вероятностей задачи с решением

Дисперсия характеризует степень разброса значений Теория вероятностей задачи с решением относительно математического ожидания. Дисперсия обладает следующими свойствами:

Теория вероятностей задачи с решением

Дисперсия Теория вероятностей задачи с решением равна разности математического ожидания квадрата Теория вероятностей задачи с решением и квадрата математического ожидания

Теория вероятностей задачи с решением

Средним квадратическим ожиданием Теория вероятностей задачи с решением называется корень квадратный из дисперсии

Теория вероятностей задачи с решением

Задача №19

Дискретная Теория вероятностей задачи с решением задана законом распределения

Теория вероятностей задачи с решением

Вычислить

Теория вероятностей задачи с решением

Решение:

Теория вероятностей задачи с решением

Дисперсию вычислим по формуле

Теория вероятностей задачи с решением

Задача №20

Непрерывная Теория вероятностей задачи с решением задана функцией распределения

Теория вероятностей задачи с решением

Вычислить

Теория вероятностей задачи с решением

Решение:

Найдем плотность распределения

Теория вероятностей задачи с решением

Вычислим математическое ожидание

Теория вероятностей задачи с решением

Дисперсия определяется по формуле

Теория вероятностей задачи с решением

Законы распределения дискретных случайных величин

Дискретная Теория вероятностей задачи с решением называется распределенной по биномиальному закону, если она принимает конечное число значений Теория вероятностей задачи с решением с вероятностями, которые определяются по формуле Бернулли

Теория вероятностей задачи с решением

Для дискретной Теория вероятностей задачи с решением, распределенной по биномиальному закону, справедливы следующие соотношения

Теория вероятностей задачи с решением

Дискретная Теория вероятностей задачи с решением называется распределенной по закону Пуассона, если она принимает счетное число значений Теория вероятностей задачи с решением с вероятностями, которые определяются по формуле Пуассона

Теория вероятностей задачи с решением

Для дискретной Теория вероятностей задачи с решением, распределенной по закону Пуассона справедливы соотношения

Теория вероятностей задачи с решением

Задача №21

О сигнализации о пожаре установлено три независимо работающих устройства. Вероятность того, что при пожаре сработает каждое устройство постоянна и равна 0,9. Теория вероятностей задачи с решением равна количеству срабатывающих устройств при пожаре. Требуется составить закон распределения Теория вероятностей задачи с решением и вычислить Теория вероятностей задачи с решением.

Решение:

Теория вероятностей задачи с решением принимает значение 0; 1; 2; 3. Определим вероятности Теория вероятностей задачи с решением по формуле (8.1).

Теория вероятностей задачи с решением

Проверка:

Теория вероятностей задачи с решением

Закон распределения Теория вероятностей задачи с решением имеет вид

Теория вероятностей задачи с решением

Вычислим

Теория вероятностей задачи с решением

Законы распределения непрерывных случайных величин

Непрерывная Теория вероятностей задачи с решением называется равномерно распределенной на Теория вероятностей задачи с решением, если плотность распределения вероятностей имеет вид

Теория вероятностей задачи с решением

Для Теория вероятностей задачи с решением. равномерно распределенной на Теория вероятностей задачи с решением, справедливы следующие соотношения:

Теория вероятностей задачи с решением

Непрерывная Теория вероятностей задачи с решением называется распределенной но показательному закону, если плотность распределения вероятностей имеет вид

Теория вероятностей задачи с решением

Для Теория вероятностей задачи с решением, распределенной по показательному закону, справедливы следующие соотношения

Теория вероятностей задачи с решением

Функция

Теория вероятностей задачи с решением

определяет вероятность отказа за время Теория вероятностей задачи с решением.

Вероятность безотказной работы за это время будет равна

Теория вероятностей задачи с решением

Функцию Теория вероятностей задачи с решением называют функцией надежности.

Непрерывная Теория вероятностей задачи с решением называется распределенной по нормальному закону, если плотность распределения вероятностей имеет вид

Теория вероятностей задачи с решением

Для нормально распределенной Решение задач по теории вероятностей справедливы следующие соотношения:

Решение задач по теории вероятностей

Задача №22

Решение задач по теории вероятностей распределена равномерно на (3;5). Требуется найти:

Решение задач по теории вероятностей

Решение:

На основании формул (9.1) и (9.2) имеем

Решение задач по теории вероятностей

Задача №23

Решение задач по теории вероятностей распределенная по показательному закону, имеет функцию распределения вида

Решение задач по теории вероятностей

Вычислить

Решение задач по теории вероятностей

Решение:

Согласно формуле (9.4) Решение задач по теории вероятностей. Тогда

Решение задач по теории вероятностей

Задача №24

Решение задач по теории вероятностей распределена по нормальному закону с параметрами

Решение задач по теории вероятностей

Требуется: 1) записать Решение задач по теории вероятностей и Решение задач по теории вероятностей; 2) вычислить

Решение задач по теории вероятностей

Решение:

Согласно формулам (9.5) и (9.6) имеем

Решение задач по теории вероятностей

Предельные теоремы теории вероятностей

Неравенство Чебышева. Вероятность того, что отклонение Решение задач по теории вероятностей от ее математического ожидания по модулю меньше данного числа Решение задач по теории вероятностей не менее, чем Решение задач по теории вероятностей

Решение задач по теории вероятностей

Теорема Чебышева. Пусть даны Решение задач по теории вероятностей, которые попарно независимы, имеют математические ожидания Решение задач по теории вероятностей и дисперсии, ограниченные одним и тем же числом Решение задач по теории вероятностей. Тогда для любого числа Решение задач по теории вероятностей выполняется неравенство

Решение задач по теории вероятностей

Если Решение задач по теории вероятностей имеют одно и то же математическое ожидание Решение задач по теории вероятностей, то неравенство (10.2) примет вид

Решение задач по теории вероятностей

Переходя в неравенство (10.3) к пределу при Решение задач по теории вероятностей, получим

Решение задач по теории вероятностей

В этом случае говорят, что при Решение задач по теории вероятностей последовательность Решение задач по теории вероятностей сходится по вероятности к своему математическому ожиданию Решение задач по теории вероятностей.

Теорема Бернулли. Если в каждом из Решение задач по теории вероятностей независимых испытаний вероятность Решение задач по теории вероятностей появления события Решение задач по теории вероятностей постоянна, то вероятность того, что отклонение относительной частоты Решение задач по теории вероятностей от вероятности Решение задач по теории вероятностей по модулю не превзойдет положительного числа Решение задач по теории вероятностей больше чем разность Решение задач по теории вероятностей

Решение задач по теории вероятностей

Переходя в неравенство (10.5) к пределу при Решение задач по теории вероятностей, получим

Решение задач по теории вероятностей

При большом числе испытаний относительная частота Решение задач по теории вероятностей события Решение задач по теории вероятностей сходится по вероятности к вероятности Решение задач по теории вероятностей появления события в отдельном испытании.

Центральная предельная теорема Ляпунова. Пусть Решение задач по теории вероятностей последовательность независимых Решение задач по теории вероятностей для каждой из которых существует математическое ожидание Решение задач по теории вероятностей и дисперсия Решение задач по теории вероятностей, центральный момент третьего порядка

Решение задач по теории вероятностей

и выполняется условие Ляпунова

Решение задач по теории вероятностей

Тогда при Решение задач по теории вероятностей распределение Решение задач по теории вероятностей стремится к нормальному закону с функцией распределения

Решение задач по теории вероятностей

Задача №25

Средняя длина детали равна 50 см, а дисперсия длины равна 0,1. Оценить вероятность того, что изготовленная деталь окажется по своей длине не менее 49,5 см. и не более 50,5 см.

Решение:

По условию задачи

Решение задач по теории вероятностей

Так как Решение задач по теории вероятностей непрерывна, то

Решение задач по теории вероятностей

Применяя неравенство (10.1), получим

Решение задач по теории вероятностей

Задача №26

При штамповке деталей брак составляет 3%. Найти вероятность того, что при проверке партии из 1000 деталей выявится отклонение от установленного процента брака меньше, чем на 1%.

Решение:

По условию задачи

Решение задач по теории вероятностей

Воспользуемся неравенством (10.5)

Решение задач по теории вероятностей

Задача №27

Складываются 48 попарно независимых Решение задач по теории вероятностей, распределенных по равномерному закону на интервале (0; 1). Записать приближенно функцию распределения суммы этих Решение задач по теории вероятностей. Найти вероятность того, что эта сумма будет заключена в пределах от 26 до 28.

Решение:

Решение задач по теории вероятностей

Обозначим

Решение задач по теории вероятностей
Решение задач по теории вероятностей

Тогда

Решение задач по теории вероятностей

и функция распределения Решение задач по теории вероятностей имеет вид

Решение задач по теории вероятностей

Найдем вероятность попадания Решение задач по теории вероятностей в интервал (26; 28).

Решение задач по теории вероятностей

Двумерные случайные величины. Законы распределения. Условные законы распределения

Двумерной Решение задач по теории вероятностей называется совокупность двух случайных величин Решение задач по теории вероятностей, описывающих тот или иной случайный эксперимент. Решение задач по теории вероятностей и Решение задач по теории вероятностей называются составляющими.

Если составляющие двумерной Решение задач по теории вероятностей являются дискретными Решение задач по теории вероятностей. то двумерная Решение задач по теории вероятностей называется дискретной, если составляющие являются непрерывными Решение задач по теории вероятностей. то двумерная Решение задач по теории вероятностей называется непрерывной. Если одна из составляющих является дискретной, а вторая — непрерывной, то двумерная величина называется сметанной.

Законом распределения дискретной двумерной Решение задач по теории вероятностей называется соответствие между всевозможными парами Решение задач по теории вероятностей и вероятностями их появления Решение задач по теории вероятностей. Закон распределения дискретных двумерных Решение задач по теории вероятностей задается в виде таблицы

Решение задач по теории вероятностей

Если известен закон распределения двумерной дискретной Решение задач по теории вероятностей, то законы распределения составляющих находятся следующим образом

Решение задач по теории вероятностей

Функцией распределения двумерной Решение задач по теории вероятностей называется вероятность события

Решение задач по теории вероятностей

Функция распределения вероятностей двумерной Решение задач по теории вероятностей обладает следующими свойствами:

  1. Решение задач по теории вероятностей
  2. Решение задач по теории вероятностей
  3. Решение задач по теории вероятностей
  4. Решение задач по теории вероятностей, где Решение задач по теории вероятностей — функции распределения составляющих Решение задач по теории вероятностей и Решение задач по теории вероятностей.
  5. Функция распределения Решение задач по теории вероятностей является не убывающей функцией по каждому из своих аргументов.

Функция Решение задач по теории вероятностей называется плотностью распределения вероятностей двумерной Решение задач по теории вероятностей, если она удовлетворяет соотношению

Решение задач по теории вероятностей

Плотность распределения вероятностей двумерной Решение задач по теории вероятностей обладает следующими свойствами:

Решение задач по теории вероятностей

Чтобы задать закон распределения непрерывной двумерной Решение задач по теории вероятностей, достаточно задать либо функцию распределения, либо плотность распределения.

Условным законом распределения называется закон распределения одной из составляющих при условии, что вторая составляющая приняла определенное значение. Для дискретных двумерных Решение задач по теории вероятностей условные вероятности определяются по формулам:

Решение задач по теории вероятностей

Условные плотности распределения находятся по формулам:

Решение задач по теории вероятностей

где Решение задач по теории вероятностей — плотности распределения составляющих Решение задач по теории вероятностей.

Составляющие Решение задач по теории вероятностей и Решение задач по теории вероятностей двумерной Решение задач по теории вероятностей называются независимыми, если

Решение задач по теории вероятностей

Задача №28

Двумерная дискретная Решение задач по теории вероятностей задана законом распределения

Решение задач по теории вероятностей

Требуется найти законы распределения составляющих и условный закон распределения составляющей Решение задач по теории вероятностей при условии, что Решение задач по теории вероятностей = 1.

Решение:

Законы распределения составляющих Решение задач по теории вероятностей и Решение задач по теории вероятностей найдем с использованием формул (11.1).

Решение задач по теории вероятностей

Тогда закон распределения составляющих Решение задач по теории вероятностей имеет вид

Решение задач по теории вероятностей

Аналогично находится закон распределения составляющей Решение задач по теории вероятностей.

Решение задач по теории вероятностей

Условный закон распределения составляющей Решение задач по теории вероятностей при условии, что Решение задач по теории вероятностей = 1, найдем с использованием формул (11.3).

Решение задач по теории вероятностей

Задача №29

Дана функция распределении двумерной Решение задач по теории вероятностей

Решение задач по теории вероятностей

Требуется найти плотность распределения Решение задач по теории вероятностей и условные плотности распределения

Решение задач по теории вероятностей

Решение:

Плотность распределения найдем, используя свойство 3 плотности распределения

Решение задач по теории вероятностей

Плотности распределения составляющих найдем, используя свойство 5 плотности распределения

Решение задач по теории вероятностей

Условные плотности распределения составляющих найдем с использованием формул (11.4)

Решение задач по теории вероятностей

Так как условные плотности распределения вероятностей совпадают с плотностями распределения составляющих, то составляющие являются независимыми Решение задач по теории вероятностей.

Числовые характеристики двумерных случайных величин. Коэффициент корреляции

Начальным моментом порядка Решение задач по теории вероятностей двумерной Решение задач по теории вероятностей называется математическое ожидание произведения Решение задач по теории вероятностей

Решение задач по теории вероятностей

Для непрерывных Решение задач по теории вероятностей

Решение задач по теории вероятностей

для дискретных

Решение задач по теории вероятностей

Центральным моментом порядка Решение задач по теории вероятностей двумерной Решение задач по теории вероятностей называется математическое ожидание произведения

Решение задач по теории вероятностей
Решение задач по теории вероятностей

Для непрерывной двумерной Решение задач по теории вероятностей центральный момент порядка Решение задач по теории вероятностей вычисляется по формуле

Решение задач по теории вероятностей

для дискретных Решение задач по теории вероятностей

Решение задач по теории вероятностей

Корреляционным моментом двумерной Решение задач по теории вероятностей называется центральный момент Решение задач по теории вероятностей. Для непрерывной Решение задач по теории вероятностей корреляционный момент вычисляется по формуле

Решение задач по теории вероятностей

для дискретных

Решение задач по теории вероятностей

Корреляционный момент характеризует тесноту связи между составляющими Решение задач по теории вероятностей и Решение задач по теории вероятностей. Коэффициентом корреляции Решение задач по теории вероятностей Решение задач по теории вероятностей и Решение задач по теории вероятностей называется отношение корреляционного момента к произведению средних квадратических отклонений составляющих

Решение задач по теории вероятностей

Коэффициент корреляции обладает следующими свойствами:

Решение задач по теории вероятностей

Если зависимость между Решение задач по теории вероятностей и Решение задач по теории вероятностей отсутствует, то Решение задач по теории вероятностей. Если Решение задач по теории вероятностей, то зависимость между Решение задач по теории вероятностей и Решение задач по теории вероятностей линейная. Решение задач по теории вероятностейи Решение задач по теории вероятностей, для которых Решение задач по теории вероятностей называются некоррелированными. Очевидно, что независимые Решение задач по теории вероятностей не коррелированы. Обратное утверждение верно лишь при условии нормального распределения двумерной Решение задач по теории вероятностей. Коэффициент корреляции вычисляется по формуле

Решение задач по теории вероятностей

Задача №30

Двумерная Решение задач по теории вероятностей задана таблицей

Решение задач по теории вероятностей

Вычислить коэффициент корреляции.

Решение:

Составим законы распределения составляющих

Решение задач по теории вероятностей

Вычислим математические ожидания и средние квадратические отклонения составляющих

Решение задач по теории вероятностей
Решение задач по теории вероятностей

Вычислим коэффициент корреляции по формуле (12.9)

Решение задач по теории вероятностей

Составляющие Решение задач по теории вероятностей и Решение задач по теории вероятностей являются некоррелированными Решение задач по теории вероятностей. Очевидно, что независимые Решение задач по теории вероятностей не коррелированы. Обратное утверждение верно лишь при условии нормального распределения двумерной Решение задач по теории вероятностей.

Задача №31

Непрерывная двумерная Решение задач по теории вероятностей задана плотностью распределения

Решение задач по теории вероятностей

Найти коэффициент корреляции.

Решение:

Найдем математические ожидания составляющих

Решение задач по теории вероятностей

Найдем дисперсии

Решение задач по теории вероятностей

Вычислим корреляционный момент

Решение задач по теории вероятностей

Коэффициент корреляции вычислим по формуле (12.8)

Решение задач по теории вероятностей

Статистическое распределение. Эмпирическая функция распределения и ее свойства. Полигон и гистограмма. Числовые характеристики выборки

Генеральной совокупностью называется совокупность элементов, объединенных по некоторому признаку, из которых производится выборка.

Выборочной совокупностью или выборкой называется совокупность объектов, случайно выбранных для исследования.

Объемом выборки называется количество объектов, входящих в выборку.

Пусть из совокупности извлечена выборка объемом п.

Выборочная совокупность, расположенная по возрастанию или убыванию значения признака, называется вариационным рядом, а сс объекты — вариантами.

Если значения вариант совпадают или отличаются незначительно, то их можно сгруппировать, придав частоту каждой варианте.

В результате получим сгруппированный вариационный ряд.

Частостью или относительной частотой варианты называется отношение частоты варианты к объему выборки

Решение задач по теории вероятностей

Статистическим распределением называется соответствие, по которому каждому возможному значению варианты ставится в соответствие частота (относительная частота) се появления. Статистическое распределение записывается в виде таблицы, в которой в первой строке перечислены все значения вариант, а во второй частоты или частости, которые соответствуют вариантам

Решение задач по теории вероятностей

Для построения интервального статистического ряда разбивают множество вариант на полуинтервалы Решение задач по теории вероятностей. т.е. производят группировку. Рекомендуется число интервалов Решение задач по теории вероятностей определять по формуле

Решение задач по теории вероятностей

Длина интервала равна

Решение задач по теории вероятностей

Для наглядности используются графические изображения вариционных рядов в виде полигона и гистограммы.

Полигоном частот или частостей называется ломаная линия, соединяющая точки с координатами

Решение задач по теории вероятностей

Гистограммой частот или частостей называют ступенчатую фигуру, составленную из прямоугольников с основанием Решение задач по теории вероятностей и высотой

Решение задач по теории вероятностей

Эмпирической функцией распределения называют функцию Решение задач по теории вероятностей, определяющую для каждого значения Решение задач по теории вероятностей относительную частоту события Решение задач по теории вероятностей:

Решение задач по теории вероятностей

где Решение задач по теории вероятностей — число вариант (с учетом их кратностей) меньших Решение задач по теории вероятностей — объем выборки. Эмпирическая функция распределения обладает следующими свойствами:

  1. Значения эмпирической функции принадлежат отрезку [0; l],
  2. Эмпирическая функция является неубывающей функцией.
  3. Если Решение задач по теории вероятностей наименьшее значение варианты, а Решение задач по теории вероятностей наибольшее значение варианты, то
Решение задач по теории вероятностей

Для описания выборки применяются такие числовые характеристики, как выборочная средняя, выборочная дисперсия, выборочное среднее квадратическое отклонение.

Выборочной средней называется среднее значение варианты, вычисленное по данным выборки

Решение задач по теории вероятностей

где Решение задач по теории вероятностей — частота варианты Решение задач по теории вероятностей.

Выборочной дисперсией называется дисперсия, вычисленная по данным выборки

Решение задач по теории вероятностей

Выборочная дисперсия равна разности между средним значением квадрата вариант и квадратом выборочного среднего

Решение задач по теории вероятностей

Выборочным средним квадратическим отклонением называется корень квадратный из выборочной дисперсии

Решение задач по теории вероятностей

Задача №32

По данному распределению выборки найти эмпирическую функцию распределения и построить полигон частот

Решение задач по теории вероятностей

.

Решение:

Определим объем выборки

Решение задач по теории вероятностей

Определим относительные частоты вариант

Решение задач по теории вероятностей
Решение задач по теории вероятностей

Запишем эмпирическую функцию распределения

Решение задач по теории вероятностей

Построим полигон частот

Решение задач по теории вероятностей

Задача №33

Построить гистограмму частостей по данным выборки объема 100 и вычислить числовые характеристики выборки.

Решение задач по теории вероятностей

Решение:

Вычислим относительные частоты по формуле

Решение задач по теории вероятностей

и найдем высоты прямоугольников по формуле

Решение задач по теории вероятностей

Вычисления сведем в таблицу

Решение задач по теории вероятностей

Построим гистограмму частостей

Решение задач по теории вероятностей

Вычислим числовые характеристики выборки

Решение задач по теории вероятностей

Вычислим

Решение задач по теории вероятностей
Решение задач по теории вероятностей

Точенные оценки неизвестных параметров распределения

Пусть изучается Решение задач по теории вероятностей с законом распределения, зависящим от одного или нескольких параметров. Требуется по выборке, полученной в результате Решение задач по теории вероятностей испытаний оценить неизвестный параметр Решение задач по теории вероятностей.

Точечной оценкой неизвестного параметра Решение задач по теории вероятностей теоретического распределения называется его приближенное значение, зависящее от данных выборки

Решение задач по теории вероятностей

Точечная оценка должна удовлетворять следующим требованиям:

  • оценка должна быть несмещенной, т.е.
Решение задач по теории вероятностей

оценка должна быть состоятельной, т.е. она должна сходиться по вероятности к оцениваемому параметру: для

Решение задач по теории вероятностей
  • оценка должна быть эффективной: если неизвестный параметр имеет несколько оценок, то в качестве оценки нужно брать оценку с наименьшей дисперсией.

Выборочная средняя Решение задач по теории вероятностей является несмещенной и состоятельной оценкой для математического ожидания генеральной совокупности.

Несмещенной и состоятельной оценкой для дисперсии генеральной совокупности является исправленная выборочная дисперсия

Решение задач по теории вероятностей

Исправленным средним квадратическим отклонением называется корень квадратный из исправленной дисперсии

Решение задач по теории вероятностей

Для вычисления Решение задач по теории вероятностей и Решение задач по теории вероятностей разработано много методов. Одним из наиболее распространенных методов является метод произведений. При вычислении выборочного среднего и выборочной дисперсии поступают следующим образом: выбираем «ложный нуль» Решение задач по теории вероятностей. В качестве «ложного нуля» берется варианта стоящая посредине вариационного ряда или варианта, имеющая максимальную частоту;

  • переходим к условным вариантам Решение задач по теории вероятностей по формулам Решение задач по теории вероятностей, где Решение задач по теории вероятностей — шаг разбиения;
  • вычисляем условные моменты 1 -ого и 2-ого порядков
Решение задач по теории вероятностей
  • вычисляем выборочное среднее Решение задач по теории вероятностей и выборочную дисперсию Решение задач по теории вероятностей
Решение задач по теории вероятностей

Задача №34

Методом произведений вычислить выборочную среднюю и выборочную дисперсию по данным выборки

Решение задач по теории вероятностей

Решение:

В качестве «ложного нуля» возьмем варианту 75, Решение задач по теории вероятностей = 75. Перейдем к условным вариантам по формуле Решение задач по теории вероятностей. Результаты вычислений сведем в таблицу.

Решение задач по теории вероятностей

Результаты вычислений можно проверить равенством

Решение задач по теории вероятностей

Равенство выполняется, следовательно, таблица заполнена верно. Вычислим условные моменты

Решение задач по теории вероятностей

Вычислим выборочную среднюю и выборочную дисперсию

Решение задач по теории вероятностей

Интервальные оценки

Пусть Решение задач по теории вероятностей — функция выборки. Это есть случайная величина, называемая статистикой.

Интервальной называют оценку, которая определяется случайным интервалом

Решение задач по теории вероятностей

В качестве интервальной оценки используются доверительные интервалы.

Доверительным интервалом для неизвестного параметра Решение задач по теории вероятностей, называется случайный интервал Решение задач по теории вероятностей, который с заданной вероятностью Решение задач по теории вероятностей (надежностью) накрывает неизвестный параметр, Решение задач по теории вероятностей.

Если исследуемая Решение задач по теории вероятностей распределена по нормальному закону с известным средним квадратическим отклонением Решение задач по теории вероятностей, то доверительный интервал для математического ожидания определяется неравенством

Решение задач по теории вероятностей

где Решение задач по теории вероятностей — точность оценки, Решение задач по теории вероятностей — объем выборки, Решение задач по теории вероятностей — значение аргумента функции Лапласа, при котором

Решение задач по теории вероятностей

Если среднее квадратическое отклонение неизвестно, то доверительный интервал для математического ожидания исследуемой Решение задач по теории вероятностей определяется неравенством

Решение задач по теории вероятностей

Значения Решение задач по теории вероятностей находят по таблице приложения 5 по заданным Решение задач по теории вероятностей и Решение задач по теории вероятностей. Число

Решение задач по теории вероятностей

называют точностью оценки математического ожидания.

Доверительный интервал для среднего квадратического отклонения исследуемой Решение задач по теории вероятностей определяется неравенством

Решение задач по теории вероятностей

Значения Решение задач по теории вероятностей и Решение задач по теории вероятностей находятся по таблице приложения 6 по заданным Решение задач по теории вероятностей и Решение задач по теории вероятностей.

Задача №35

Найти доверительный интервал для оценки с надежностью Решение задач по теории вероятностей неизвестного математического ожидания нормально распределенного признака Решение задач по теории вероятностей, если известно Решение задач по теории вероятностей, а по данным выборки объемом 100 вычислено Решение задач по теории вероятностей.

Решение:

Так как известно среднее квадратическое отклонение Решение задач по теории вероятностей то для определения доверительного интервала для математического ожидания воспользуемся неравенством (3.1). Определим значение

Решение задач по теории вероятностей

Подставим в неравенство (3.1)

Решение задач по теории вероятностей

Задача №36

Для исследования нормально распределенной Решение задач по теории вероятностей извлечена выборка объемом 25.

Решение задач по теории вероятностей

Найти с надежностью Решение задач по теории вероятностей доверительные интервалы для математического ожидания и среднего кадратического отклонения исследуемой Решение задач по теории вероятностей.

Решение:

По данным выборки методом произведений определим Решение задач по теории вероятностей и Решение задач по теории вероятностей

Решение задач по теории вероятностей

Проверка:

Решение задач по теории вероятностей
Решение задач по теории вероятностей

Для определения доверительного интервала для математического ожидания воспользуемся неравенством (3.2);

Решение задач по теории вероятностей

Для определения доверительного интервала для среднего квадратического отклонения воспользуемся неравенством (3.3):

Решение задач по теории вероятностей

Статистическая проверка гипотез. Критерии согласия Пирсона и Колмогорова

Статистической называется гипотеза о предполагаемом виде неизвестного распределения Решение задач по теории вероятностей или о значениях параметров известного вида распределения. Пулевой гипотезой Решение задач по теории вероятностей называется выдвинутая гипотеза. Конкурирующей (альтернативной) называется гипотеза, которая противоречит нулевой гипотезе. При проверке статистической гипотезы могут быть допущены ошибки двух родов. Ошибка первого рода — будет отклонена верная гипотеза. Ошибка второго рода — будет принята неверная гипотеза.

Вероятность допустить ошибку первого рода называется уровнем значимости. Для проверки статистической гипотезы используют специальную статистику, которая называется критерием.

По рассчитанному значению критерия определяют принимать или отвергать нулевую гипотезу.

Критерий согласия — это проверка гипотезы о виде распределения Решение задач по теории вероятностей.

Основными критериями согласия являются критерии Пирсона Решение задач по теории вероятностей и Колмохорова. При проверке гипотезы с помощью критерия Пирсона поступают следующим образом:

из генеральной совокупности извлекают выборку объемом Решение задач по теории вероятностей; по выборке вычисляют Решение задач по теории вероятностей и Решение задач по теории вероятностей:

переходят к нормированной Решение задач по теории вероятностей по формуле

Решение задач по теории вероятностей

находят вероятности попадания в интервал

Решение задач по теории вероятностей

вычисляют теоретические частоты

Решение задач по теории вероятностей

вычисляют статистику Пирсона

Решение задач по теории вероятностей

из таблицы критических точек распределения Пирсона (приложение 3) по уровню значимости Решение задач по теории вероятностей и числу степеней свободы

Решение задач по теории вероятностей

определяют Решение задач по теории вероятностей, где Решение задач по теории вероятностей — число интервалов в вариационном ряде, Решение задач по теории вероятностей — количество параметров закона распределения, которые оцениваются по выборке (для нормального закона Решение задач по теории вероятностей=2);

• если Решение задач по теории вероятностей то нет необходимости отвергать нулевую гипотезу, т.е. эмпирические и теоретические частоты согласуются;

• если Решение задач по теории вероятностей то гипотеза отвергается, т.е. расхождение между теоретическими и эмпирическими частотами существенно;

• если исследуется дискретная Решение задач по теории вероятностей, распределенная по нормальному закону, то теоретические вероятности определяются по формуле

Решение задач по теории вероятностей

где Решение задач по теории вероятностей — шаг,

Решение задач по теории вероятностей

Задача №37

Пользуясь критерием Пирсона, при уровне значимости Решение задач по теории вероятностей проверить, согласуется ли гипотеза о нормальном распределении генеральной совокупности с данными выборки

Решение задач по теории вероятностей

Решение:

По данным выборки методом произведений вычислим Решение задач по теории вероятностей и Решение задач по теории вероятностей.

Решение задач по теории вероятностей

Проверка:

Решение задач по теории вероятностей

Вычислим вероятности попадания в интервалы

Решение задач по теории вероятностей

Вычислим Решение задач по теории вероятностей

Решение задач по теории вероятностей

Определим число степеней свободы

Решение задач по теории вероятностей

По уровню значимости Решение задач по теории вероятностей и числу степеней свободы Решение задач по теории вероятностей найдем критическую точку правосторонней критической области распределения Пирсона (приложение 3)

Решение задач по теории вероятностей

Так как Решение задач по теории вероятностей, гипотеза о нормальном распределении совокупности отвергается.

Критерий согласия Колмогорова применяется для проверки гипотезы о законе распределения непрерывной Решение задач по теории вероятностей. Для статистической проверки гипотезы с помощью критерия согласия Колмогорова поступают следующим образом:

  • выбирают из генеральной совокупности выборку;
  • по выборке составляют эмпирическую функцию распределения Решение задач по теории вероятностей;
  • записывают теоретическую функцию распределения Решение задач по теории вероятностей;
  • вычисляют величину
Решение задач по теории вероятностей

вычисляют статистику Колмогорова

Решение задач по теории вероятностей

где Решение задач по теории вероятностей объем выборки. Решение задач по теории вероятностей имеет функцию распределения

Решение задач по теории вероятностей

которая называется функцией Колмогорова;

находим по уровню значимости Решение задач по теории вероятностей (приложение 7);

  • если Решение задач по теории вероятностей, то гипотеза о законе распределения Решение задач по теории вероятностей отклоняется, если Решение задач по теории вероятностей, то нет оснований отклонять нулевую гипотезу.

Рассмотрим применение критерия Колмогорова на примере.

Задача №38

Проверить по критерию Колмогорова гипотезу о нормальном распределении Решение задач по теории вероятностей но данным выборки при уровне значимости Решение задач по теории вероятностей.

Решение задач по теории вероятностей

Решение:

Вычислим выборочную среднюю Решение задач по теории вероятностей и исправленное среднее квадратическое отклонение Решение задач по теории вероятностей.

Решение задач по теории вероятностей

Тогда теоретическая функция распределения в предположении, что Решение задач по теории вероятностей распределена по нормальному закону, имеет вид

Решение задач по теории вероятностей

где Решение задач по теории вероятностей — функция Лапласа.

Эмпирическую функцию распределения определим по формуле

Решение задач по теории вероятностей

где Решение задач по теории вероятностей сумма частот вариант меньших Решение задач по теории вероятностей.

Решение задач по теории вероятностей

Вычислим величину

Решение задач по теории вероятностей
Решение задач по теории вероятностей

Вычислим статистику Колмогорова

Решение задач по теории вероятностей

По уровню значимости Решение задач по теории вероятностей найдем по таблице (приложение 7) Решение задач по теории вероятностей. Т.к. Решение задач по теории вероятностей, то нет оснований отвергать гипотезу о нормальном распределении.

Выборочный коэффициент корреляции и его свойства

Проверка гипотезы о равенстве нулю коэффициента корреляции Краткие теоретические сведения

Для вычисления выборочного коэффициента корреляции данные представляются в виде корреляционной таблицы. Корреляционная таблица представляет собой таблицу следующего вида: в первой строке записаны наблюдаемые значения Решение задач по теории вероятностей, в первом столбце записаны наблюдаемые значения Решение задач по теории вероятностей, на пересечении Решение задач по теории вероятностей-той строки и Решение задач по теории вероятностей-го столбца записывается частота Решение задач по теории вероятностей появления пары Решение задач по теории вероятностей. В последнем столбце записывается частота появления варианты Решение задач по теории вероятностей, в последней строке — частота появления варианты Решение задач по теории вероятностей на пересечении последней строки и последнего столбца записывается суммарное количество наблюдений. Корреляционная таблица имеет вид

Решение задач по теории вероятностей

Основной оценкой тесноты связи между случайными величинами Решение задач по теории вероятностей и Решение задач по теории вероятностей служит выборочный коэффициент корреляции Решение задач по теории вероятностей который определяется так

Решение задач по теории вероятностей

где Решение задач по теории вероятностей — среднее арифметическое произведений значений Решение задач по теории вероятностей.

Свойства выборочного коэффициента корреляции аналогичны свойствам коэффициента корреляции между Решение задач по теории вероятностей:

  1. Решение задач по теории вероятностей;
  2. если переменные Решение задач по теории вероятностей и Решение задач по теории вероятностей умножить на одно и то же число, то коэффициент корреляции не изменится;
  3. если Решение задач по теории вероятностей, то корреляционная связь между значениями Решение задач по теории вероятностей и Решение задач по теории вероятностей представляет собой линейную функциональную зависимость.

Для вычисления выборочного коэффициента корреляции применяется формула

Решение задач по теории вероятностей

Если Решение задач по теории вероятностей, то между наблюдаемыми значениями Решение задач по теории вероятностей и Решение задач по теории вероятностей корреляционная зависимость отсутствует, чем ближе к единице приближается модуль коэффициента корреляции, тем теснее связь между переменными Решение задач по теории вероятностей и Решение задач по теории вероятностей. Т.к. выборочный коэффициент корреляции вычисляется по данным выборки, то в отличие от коэффициента корреляции генеральной совокупности Решение задач по теории вероятностей является случайной величиной. Если Решение задач по теории вероятностей то возникает вопрос, объясняется ли это действительно существующей связью между Решение задач по теории вероятностей и Решение задач по теории вероятностей или вызвано случайными факторами. Для выяснения этого вопроса проверяется гипотеза Решение задач по теории вероятностей о равенстве нулю коэффициента корреляции Решение задач по теории вероятностей генеральной совокупности.

Для того, чтобы при уровне значимости Решение задач по теории вероятностей проверить нулевую гипотезу о равенстве нулю коэффициента корреляции генеральной двумерной нормальной совокупности, вычисляют статистику

Решение задач по теории вероятностей

и по таблице критических точек распределения Стьюдента (приложение 4) по уровню значимости а и числу степеней свободы Решение задач по теории вероятностей находят

Решение задач по теории вероятностей

критическую точку двусторонней критической области. Если

Решение задач по теории вероятностей

нет оснований отвергать нулевую гипотезу, т.е. Решение задач по теории вероятностей; если

Решение задач по теории вероятностей

нулевую гипотезу отвергают, т.е. Решение задач по теории вероятностей. Рассмотрим вычисление выборочною коэффициента корреляции и проверку гипотезы о равенстве нулю коэффициента корреляции генеральной совокупности на примере.

Задача №39

По данной корреляционной таблице вычислить выборочный коэффициент корреляции и при уровне значимости Решение задач по теории вероятностей проверить гипотезу о равенстве нулю коэффициента корреляции генеральной совокупности.

Решение задач по теории вероятностей

Решение:

Вычислим компоненты, входящие в формулу (5.1), для вычисления Решение задач по теории вероятностей

Решение задач по теории вероятностей

Вычислим выборочный коэффициент корреляции

Решение задач по теории вероятностей

Проверим гипотезу о равенстве нулю коэффициента корреляции генеральной совокупности. Вычислим

Решение задач по теории вероятностей

По таблице критических точек распределения Стыодента (приложение 4) по уровню значимости Решение задач по теории вероятностей и числу степеней свободы Решение задач по теории вероятностей найдем

Решение задач по теории вероятностей

Так

Решение задач по теории вероятностей

то гипотеза о равенстве нулю коэффициента корреляции генеральной совокупности отвергается, т.е. выбранный коэффициент корреляции значим.

Кстати готовые задачи на продажу по предмету теория вероятности тут.

Линейная регрессия. Определение параметров линейной регрессии

Если обе линии регрессии Решение задач по теории вероятностей на Решение задач по теории вероятностей и Решение задач по теории вероятностей на Решение задач по теории вероятностей являются прямыми, то в этом случае корреляцию называют линейной. Выборочное уравнение прямой линии регрессии Решение задач по теории вероятностей на Решение задач по теории вероятностей имеет вид

Решение задач по теории вероятностей

Уравнение прямой регрессии Решение задач по теории вероятностей на Решение задач по теории вероятностей имеет вид

Решение задач по теории вероятностей

Здесь Решение задач по теории вероятностей — значения Решение задач по теории вероятностей — их выборочные средние.

Коэффициент уравнений (6.1)-(6.2) можно также определить по формулам, полученным методом наименьших квадратов. Например, если уравнение (6.1) взять в виде Решение задач по теории вероятностей, то параметры Решение задач по теории вероятностей и Решение задач по теории вероятностей линейной регрессии имеют вид:

Решение задач по теории вероятностей

Задача №41

Распределение 40 заводов отрасли по количеству слесарей Решение задач по теории вероятностей и числу станкосмен Решение задач по теории вероятностей задано корреляционной таблицей.

Решение задач по теории вероятностей

Составить уравнение прямой регрессии Решение задач по теории вероятностей на Решение задач по теории вероятностей.

Решение:

По корреляционной таблице вычислим

Решение задач по теории вероятностей

Подставим вычисленные значения в уравнение (6.1)

Решение задач по теории вероятностей

Задача №42

При эталонировании медного термометра изучалась зависимость электрического сопротивления Решение задач по теории вероятностей от температуры Решение задач по теории вероятностей. Были получены следующие результаты

Решение задач по теории вероятностей

Оценить параметры уравнения регрессии с помощью метода наименьших квадратов и записать уравнение регрессии Решение задач по теории вероятностей на Решение задач по теории вероятностей.

Решение:

Сведем результаты вычисления в таблицу.

Решение задач по теории вероятностей

Параметры линейной регрессии определим по формулам (6.3)

Решение задач по теории вероятностей

Эмпирическое уравнение регрессии Решение задач по теории вероятностей на Решение задач по теории вероятностей примет вид

Решение задач по теории вероятностей
Решение задач по теории вероятностей
Решение задач по теории вероятностей
Решение задач по теории вероятностей
Решение задач по теории вероятностей
Решение задач по теории вероятностей
Решение задач по теории вероятностей
Решение задач по теории вероятностей
Решение задач по теории вероятностей

Возможно эти страницы вам будут полезны:

Примеры решения задач по всем темам теории вероятностей

В различных разделах науки и техники нередко возникают ситуации, когда результат каждого из многих проводимых опытов заранее предугадать невозможно, однако можно исследовать закономерности, возникающие при проведении серии опытов. Нельзя, например, точно сказать, какая сторона монеты окажется сверху при данном броске: герб или цифра – но при большом количестве бросков число выпадений герба приближается к половине количества бросков; нельзя заранее предсказать результат одного выстрела из данного орудия по данной цели, но при большом числе выстрелов частота попадания приближается к некоторому постоянному числу. Исследование вероятностных закономерностей массовых однородных явлений составляет предмет теории вероятностей.

Основным интуитивным понятием классической теории вероятностей является случайное событие.

События, которые могут произойти в результате опыта, можно подразделить на три вида:

  • а) достоверное событие – событие, которое всегда происходит при проведении опыта;
  • б) невозможное событие – событие, которое в результате опыта произойти не может;
  • в) случайное событие – событие, которое может либо произойти, либо не произойти.

Теория вероятностей изучает закономерности, возникающие в случайных экспериментах, раскрывает объективные закономерности, присущие массовым явлениям.

Развитие как науки теории вероятностей берет свое начало с переписки Паскаля и Ферма (1654 г.). Но и до этого многих ученых интересовали задачи, относящиеся к азартным играм, теоретико-вероятностные задачи, имеющие прикладное значение (Кардано, Галилей).

Кроме задач азартных игр появлялся интерес к построению таблиц смертности и вопросам страхования (Граунт, Ван Худде, Ван де Витт).

Факты устойчивости частот случайных событий в задачах обработки демографических данных были известны еще в Древнем Китае и Древнем Риме.

С течением времени объект изучения теории вероятностей менялся. Если вначале основной интерес вызывало исследование вероятностей случайных событий, то уже в XIX в. интерес вызывало исследование случайных величин.

Теория вероятностей тесно связана с прикладными исследованиями различной природы. Она применима как в задачах экономики, производства, так и задачах лингвистики и истории. Сейчас без применения понятия доверительного интервала, корреляции, уровня значимости, нормального закона распределения случайной величины сложно представить обширное исследование в педагогике, физике, механике и других науках.

В основе квантовой механики лежат принципы теории вероятностей. В случае радиоактивного распада нет закона природы, позволяющего определить точное время деления ядра. Существуют только законы, согласно которым можно говорить о вероятности рассада ядра за определенный промежуток времени.

Элементарная теория вероятностей

Во многих областях человеческой деятельности существуют ситуации, когда определенные явления могут повторяться неограниченное число раз в одинаковых условиях. Подбрасывание монеты, кости, выброс из колоды карт и т.д.

Заметим, что представляется возможным предсказать исход последующего эксперимента по результатам предыдущих, как бы ни было велико число проведенных испытаний.

Во-вторых, относительная частота определенных исходов по мере роста числа испытаний стабилизируется, приближаясь к определенному числу.

Рассмотрим эксперимент по подбрасыванию монеты. Его результат представлен в таблице 1.

Примеры решения задач по теории вероятности

Примеры решения задач по теории вероятности — номер испытания, Примеры решения задач по теории вероятности — количество подбрасываний, в таблице указывается количество выпадений герба.

Наблюдалась стабилизация частот

Примеры решения задач по теории вероятности

Обнаруженные закономерности, распространенные на испытания с произвольным числом исходов, позволяют построить простейшую математическую модель случайного эксперимента.

Под опытом, или экспериментом, или испытанием понимают осуществление конкретного комплекса условий. Опыт называется случайным, если его результат нельзя точно предсказать до его осуществления.

Например, если опыт заключается в подбрасывании монеты, то результат его -выпадение герба (Г) или решетки (Р) — нельзя предсказать заранее. Точно также при стрельбе по мишени нельзя заранее предсказать, будет ли точное попадание в цель или промах.

Построение математической модели эксперимента начинается с описания множества Примеры решения задач по теории вероятности всевозможных исходов, которые могут произойти в результате каждого испытания.

Пространство Примеры решения задач по теории вероятности называют пространством элементарных исходов, элемент этого пространства Примеры решения задач по теории вероятности — элементарный исход (элементарное событие).

Событием является любое подмножество Примеры решения задач по теории вероятности.

Событие называется достоверным, если оно обязательно произойдет в условиях данного опыта. Например, выбор одной годной детали из партии Примеры решения задач по теории вероятности годных деталей есть событие достоверное. Так как достоверное событие является совокупностью всех элементарных событий из Примеры решения задач по теории вероятности, то оно совпадает с пространством Примеры решения задач по теории вероятности и также обозначается Примеры решения задач по теории вероятности.

Невозможным называется событие, которое в условиях данного опыта не может произойти. Невозможное событие в пространстве не имеет точек в Примеры решения задач по теории вероятности и обозначается Примеры решения задач по теории вероятности. Например, невозможно поразить одну и ту же мишень три раза при двух выстрелах.

Если ограничиться рассмотрением пространства элементарных исходов, состоящих из не более, чем счетного числа элементов, то построение вероятностной модели по существу состоит в задании распределения вероятностей на пространстве Примеры решения задач по теории вероятности в соответствие с которым каждому элементарному исходу Примеры решения задач по теории вероятности ставится в соответствие число Примеры решения задач по теории вероятности, называемое вероятностью элементарного события Примеры решения задач по теории вероятности.

Примеры решения задач по теории вероятности

Различают элементарные и составные события. События, которые невозможно разложить на более простые, называются элементарными. Все остальные события называются составными. Например, пусть событие состоит в том, что сумма очков, выпавших при бросании двух игральных костей, равна шести. Это событие состоит из пяти возможных элементарных событий — выпадение на гранях костей следующих пар цифр: (1,5), (2,4), (3,3), (4,2), (5,1) соответственно.

Вероятность любого составного события Примеры решения задач по теории вероятности:

Примеры решения задач по теории вероятности

Число Примеры решения задач по теории вероятности интерпретируется как относительная частота появления события Примеры решения задач по теории вероятности в статистическом эксперименте.

События называются несовместными, если появление одного из них исключает появление других событий в условиях одного и того же опыта.

Два или несколько событий называются равновозможными, если нет оснований утверждать, что одно из них имеет больше данных появиться в итоге опыта по сравнению с другими. Например, извлечение туза, валета, короля или дамы из колоды карт.

Событие Примеры решения задач по теории вероятности, которое обязательно произойдет, если не произойдет событие Примеры решения задач по теории вероятности, называется противоположным событию Примеры решения задач по теории вероятности. Например, выигрыш и проигрыш в лотерее — противоположные события.

Если в задаче дана вероятность Примеры решения задач по теории вероятности, тогда чтобы найти вероятность противоположного события, необходимо воспользоваться следующей формулой:

Примеры решения задач по теории вероятности

где Примеры решения задач по теории вероятности — вероятность противоположного события.

Говорят, что несколько событий в условиях данного опыта образуют полную группу событий, если в результате опыта обязательно произойдет хотя бы одно из них. Например, события «извлечение белого шара», «извлечение красного шара», «извлечение голубого шара» образуют полную группу событий в опыте извлечения шара из урны, в которой находятся белые, красные и голубые шары.

Пример №1

  • Подбрасывается монета и регистрируется сторона монеты, которая обращена к наблюдателю после падения. Найти пространство элементарных исходов.

Решение:

Пусть событие Г = {выпал герб}, Р = {выпала решка}.

Тогда Примеры решения задач по теории вероятности.

Пример №2

  • Бросается игральная кость и регистрируется число выпавших очков. Найти пространство элементарных исходов. Найти событие, состоящее в выпадении четного числа очков.

Решение:

Примеры решения задач по теории вероятности

Пример №3

  • Бросаются две игральные кости. Описать событие, состоящее в том, что сумма очков больше 10.

Решение:

Примеры решения задач по теории вероятности

Вероятностное пространство

Пусть Примеры решения задач по теории вероятности — множество элементарных исходов.

Подмножество пространства Примеры решения задач по теории вероятности называется событием Примеры решения задач по теории вероятности, если статистический эксперимент закончился элементарным исходом Примеры решения задач по теории вероятности.

Рассмотрим теоретико-множественные операции в данном пространстве, которые представлены в следующей таблице.

Примеры решения задач по теории вероятности
Примеры решения задач по теории вероятности

Пусть Примеры решения задач по теории вероятности и Примеры решения задач по теории вероятности — обозначают события выпадения при бросании игральной кости соответственно нечетного числа очков и числа очков, кратного трем. Тогда

Примеры решения задач по теории вероятности

и,значит,

Примеры решения задач по теории вероятности

Булева алгебра и понятие вероятности

Булевой алгеброй называют такой класс Примеры решения задач по теории вероятности подмножеств Примеры решения задач по теории вероятности, что:

Примеры решения задач по теории вероятности

Вероятностью Примеры решения задач по теории вероятности на булевой алгебре Примеры решения задач по теории вероятности подмножеств Примеры решения задач по теории вероятности называется отображение Примеры решения задач по теории вероятности в отрезок [0, 1], обладающее следующими свойствами:

1) Примеры решения задач по теории вероятности.

2) Если события Примеры решения задач по теории вероятности несовместны, то Примеры решения задач по теории вероятности.

3) Если Примеры решения задач по теории вероятности — монотонно убывающая последовательность элементов из Примеры решения задач по теории вероятности и Примеры решения задач по теории вероятности, то Примеры решения задач по теории вероятности. Это может быть записано, как Примеры решения задач по теории вероятности.

Замечание. Вероятность Примеры решения задач по теории вероятности на Примеры решения задач по теории вероятности обладает свойствами:

Примеры решения задач по теории вероятности

Пара Примеры решения задач по теории вероятности, состоящая из пространства элементарных исходов Примеры решения задач по теории вероятности и булевой Примеры решения задач по теории вероятности-алгебры Примеры решения задач по теории вероятности его подмножеств, называется измеримым пространством. Только элементы Примеры решения задач по теории вероятности называются событиями.

Тройка Примеры решения задач по теории вероятности, где Примеры решения задач по теории вероятности — вероятность на Примеры решения задач по теории вероятности — алгебре Примеры решения задач по теории вероятности, называется вероятностным пространством.

Элементы комбинаторики

Комбинаторика — раздел математики, изучающий комбинации конечных множеств элементов различной природы.

Пусть все элементы рассматриваемых множеств различны. Будем изучать комбинации этих элементов, различающихся количеством и/или порядком.

Дано конечное число Примеры решения задач по теории вероятности объектов произвольной природы, которые назовем элементами.

Из них по определенному правилу можно образовать некоторые группы. Подсчетом числа таких возможных групп и занимается комбинаторика.

Будем рассматривать такие множества, в которых каждый элемент входит не более одного раза (соединения без повторений).

Перестановкой из Примеры решения задач по теории вероятности элементов называется конечное множество элементов, в котором установлен порядок. Так, например, из букв Примеры решения задач по теории вероятности можно составить следующие перестановки:

Примеры решения задач по теории вероятности

Число возможных перестановок из Примеры решения задач по теории вероятности элементов равно:

Примеры решения задач по теории вероятности

Множество, для которого указан порядок расположения элементов, называется упорядоченным. Упорядоченные конечные подмножества некоторого множества называются размещениями.

Число всех возможных размещений, содержащих по Примеры решения задач по теории вероятности элементов из множества, содержащего Примеры решения задач по теории вероятности элементов Примеры решения задач по теории вероятности, определяется по формуле:

Примеры решения задач по теории вероятности

Всякое конечное подмножество, состоящее из Примеры решения задач по теории вероятности элементов данного множества из Примеры решения задач по теории вероятности элементов, называется сочетанием Примеры решения задач по теории вероятности элементов из Примеры решения задач по теории вероятности, если каждое подмножества из Примеры решения задач по теории вероятности элементов отличается одно от другого хотя бы одним элементом.

Число всех возможных сочетаний обозначается:

Примеры решения задач по теории вероятности

Пример №4

  • В группе 10 юношей и 7 девушек. Из группы случайным образом отбирается 5 студентов. Найти вероятность того, что среди них окажется 4 девушки?

Решение:

Пусть событие Примеры решения задач по теории вероятности состоит в том, что из 5 случайно отобранных студентов окажутся 4 девушки. Общее число исходов будет равно количеству способов, сколькими из 17 студентов можно отобрать по 5 студентов Примеры решения задач по теории вероятности. Благоприятствовать событию Примеры решения задач по теории вероятности будут те исходы, в которых будет 4 девушки и 1 юноша

Примеры решения задач по теории вероятности

Тогда

Примеры решения задач по теории вероятности

Пример №5

  • Сколько способов существует для выбора команды участников субботника, если известно, что в команде должно быть 5 человек, а в студенческой группе 25 человек?

Решение:

Поскольку порядок следования элементов в подгруппе не имеет значения, значит речь идет о количестве сочетаний

Примеры решения задач по теории вероятности

Гипергеометрическое распределение

Большой класс задач, которые интерпретируются в рамках урновой схемы. Типовая задача: Пусть в эксперименте рассматриваются: Примеры решения задач по теории вероятности — черных шаров, Примеры решения задач по теории вероятности — белых шаров.

Отбирается Примеры решения задач по теории вероятности шаров из урны. Какова вероятность, что выборка содержит Примеры решения задач по теории вероятности черных шаров?

Нахождение вероятности в рамках данной схемы осуществляется по следующей формуле:

Примеры решения задач по теории вероятности

Пример №6

  • Автомат с 30 мягкими игрушками, содержит фигурки зверей и супергероев в пропорции 2:1 соответственно. В случае победы автомат выдает случайным образом две игрушки. Какова вероятность, что это окажутся супергерои?

Решение:

Поскольку в эксперименте есть два ярко выделенных признака, по которым объект можно отнести либо к первому типу (мягкая игрушка), либо ко второму типу (супергерой), речь идет о гипергеометрическом распределении. Примеры решения задач по теории вероятностиПримеры решения задач по теории вероятности (количество супергероев), Примеры решения задач по теории вероятности (количество зверей). Тогда общее количество Примеры решения задач по теории вероятности, выбирают Примеры решения задач по теории вероятности игрушек, Примеры решения задач по теории вероятности (среди тех, которые выбрали, оба оказались супергероями). Тогда по формуле гипергеометрического распределения:

Примеры решения задач по теории вероятности

Пример №7

  • На складе обоев 10 трубок первой партии и 7 трубок второй партии. Продавец случайным образом выбирает 3 трубки, какова вероятность, что все трубки окажутся одной партии?

Решение:

По вопросу задачи можно сделать вывод, что исходами, благоприятствующими наступлению события Примеры решения задач по теории вероятности = { все три трубки окажутся одной партии}, являются следующие: {три трубки первой партии}, {три трубки второй партии}. Тогда вероятность может быть найдена по следующей формуле:

Примеры решения задач по теории вероятности

Примеры вероятностных пространств

Рассмотрим в таблице примеры вероятностных пространств.

Примеры решения задач по теории вероятности
Примеры решения задач по теории вероятности

Разбиение на группы: перестановки, сочетания и размещения с повторениями

Пусть Примеры решения задач по теории вероятности — целые неотрицательные числа, причем Примеры решения задач по теории вероятности. Число способов, которыми можно представить множество Примеры решения задач по теории вероятности из Примеры решения задач по теории вероятности элементов в виде суммы Примеры решения задач по теории вероятности множеств Примеры решения задач по теории вероятности, число элементов которых составляет соответственно Примеры решения задач по теории вероятности равно:

Примеры решения задач по теории вероятности

Сочетаниями из Примеры решения задач по теории вероятности элементов по Примеры решения задач по теории вероятности элементов с повторениями называются группы, содержащие Примеры решения задач по теории вероятности элементов, причем каждый элемент принадлежит одному из Примеры решения задач по теории вероятности типов.

Число различных сочетаний из Примеры решения задач по теории вероятности типов по Примеры решения задач по теории вероятности объектов с повторениями равно:

Примеры решения задач по теории вероятности

Отображение множества Примеры решения задач по теории вероятности первых натуральных чисел 1, 2, 3, …, Примеры решения задач по теории вероятности в данное множество Примеры решения задач по теории вероятности называется размещением с повторением, составленным из данных Примеры решения задач по теории вероятности элементов (количество типов) по Примеры решения задач по теории вероятности. Количество размещений с повторениями находится по следующей формуле:

Примеры решения задач по теории вероятности

Пример №8

  • Найдем число различных слов, которые можно получить, переставляя буквы в слове «Математика».

Решение:

Примеры решения задач по теории вероятности

Пример №9

  • Найти число способов, которыми можно выбрать три буквы из АААТТТГГГЦЦЦ.

Решение:

Примеры решения задач по теории вероятности

Пример №10

  • Найти количество всевозможных размещений с повторениями из букв Примеры решения задач по теории вероятности по две буквы.

Решение:

Примеры решения задач по теории вероятности

Независимость. Условные вероятности

Зная распределения вероятностей, мы в состоянии оптимизировать свое поведение при игре, производя ставки на те события из Примеры решения задач по теории вероятности, которые обладают наибольшей вероятностью.

Дальнейшая оптимизация такой игры обычно осуществляется за счет дополнительной информации, которой может располагать игрок, и учет такой информации осуществляется в терминах так называемой условной вероятности.

Рассмотрим два случайных события Примеры решения задач по теории вероятности и Примеры решения задач по теории вероятности. Пусть известно, что событие Примеры решения задач по теории вероятности наступило, но неизвестно, какое конкретно из элементарных событий Примеры решения задач по теории вероятности, составляющих событие Примеры решения задач по теории вероятности, наступило. Что можно сказать в этом случае о вероятности наступления события Примеры решения задач по теории вероятности?

Пусть вероятность события Примеры решения задач по теории вероятности — положительная величина. Условной вероятностью события Примеры решения задач по теории вероятности при условии, что произошло событие Примеры решения задач по теории вероятности, называют число:

Примеры решения задач по теории вероятности

Теорема умножения. Пусть

Примеры решения задач по теории вероятности

Тогда

Примеры решения задач по теории вероятности

Теорема.

Примеры решения задач по теории вероятности

Тогда

Примеры решения задач по теории вероятности

Задача. Студент знает 20 вопросов из 30. Экзаменатор задает три вопроса. Какова вероятность того, что студент ответит на все вопросы?

Два события называются независимыми, если вероятность появления одного из них не влияет на вероятность наступления другого. Говорят, что событие Примеры решения задач по теории вероятности не зависит от события Примеры решения задач по теории вероятности, если Примеры решения задач по теории вероятности, т.к. его вероятность не зависит от того, произошло ли событие В или нет. Независимость двух событий — свойство симметричное.

События Примеры решения задач по теории вероятности и Примеры решения задач по теории вероятности называются независимыми, если

Примеры решения задач по теории вероятности

Случайные события Примеры решения задач по теории вероятности называются попарно независимыми, если для любых

Примеры решения задач по теории вероятности

Случайные события Примеры решения задач по теории вероятности называются независимыми в совокупности, если для любого подмножества индексов:

Примеры решения задач по теории вероятности

Задача (Пример Бернштейна). На плоскость бросают тетраэдр, три грани которого окрашены соответственно в красный, зеленый и синий цвета, а на четвертой грани есть все цвета. Рассмотреть вероятности событий «выпала грань, которая содержит красный цвет», «выпала грань, которая содержит синий цвет», «выпала грань, которая содержит зеленый цвет». Будут ли эти события попарно независимыми и независимыми в совокупности?

Пример №11

  • В тире девушке и юноше выдали по одному патрону для попадания в цель и получения плюшевого медведя. Вероятность того, что попадет в цель девушка, равна 0,01. Вероятность того, что попадет юноша, равна 0,95. Каждый сделал по одному выстрелу. Какова вероятность, что мишка будет выигран?

Решение:

Исходы, благоприятствующие наступлению этого события:

{юноша попал и девушка попала},{юноша не попал и девушка попала},{юноша попал и девушка не попала}.

Примеры решения задач по теории вероятности

Пример №12

  • В вазе стоит 5 роз и 4 гвоздики. Случайным образом выбирается один цветок. После этого выбирается еще один. Какова вероятность того, что второй цветок — роза?

Решение:

Первым выбранным цветком могла оказаться роза, тогда после ее изъятия в вазе останется только 4 розы. Первой могла оказаться гвоздика, тогда после первого изъятия цветка останется 5 роз. Вероятность того, что второй выбранный цветок роза, вычисляется следующим образом:

Примеры решения задач по теории вероятности

Формула полной вероятности. Формулы Байеса

Конечное или счетное число случайных событий Примеры решения задач по теории вероятности,… образует полную группу событий (разбиение) если:

Примеры решения задач по теории вероятности

Теорема (Формула полной вероятности). Пусть случайные события Примеры решения задач по теории вероятности образует полную группу событий. Тогда для произвольного события В, рассматриваемого на том же вероятностном пространстве выполняется следующее:

Примеры решения задач по теории вероятности

Пусть до опыта об исследуемом случайном явлении имеются гипотезы Примеры решения задач по теории вероятности. После опыта становится известной информация о результатах этого

явления, но не полная. Результаты наблюдений показывают, не какой конкретно элементарный исход Примеры решения задач по теории вероятности произошел, а что наступило некоторое событие Примеры решения задач по теории вероятности. Считая, что до опыта были известны (априорные) вероятности Примеры решения задач по теории вероятности и условные вероятности Примеры решения задач по теории вероятности, необходимо определить апостериорные вероятности Примеры решения задач по теории вероятности. Решение поставленной задачи дают формулы Байеса.

Теорема (Формулы Байеса). Пусть случайные события Примеры решения задач по теории вероятности образуют полную группу событий. Пусть для произвольного события Примеры решения задач по теории вероятности. Тогда для любых значений Примеры решения задач по теории вероятности имеют место формулы:

Примеры решения задач по теории вероятности

Пример №13

  • Студент выучил 20 билетов из 25 и идет отвечать вторым. Какова вероятность, что он вытянет «удачный билет»?

Решение:

Рассмотрим следующие события:

Примеры решения задач по теории вероятности

Тогда

Примеры решения задач по теории вероятности

Пример №14

  • Соотношение грузовых автомобилей, проезжающих по шоссе, на котором стоит бензоколонка, к числу легковых машин, проезжающих по тому же шоссе, равно 2:3. Вероятность того, что будет заправляться грузовая автомашина равна 0,1; для легковой машины эта вероятность равна 0,3. К бензоколонке подъехала для заправки автомашина. Найти вероятность того, что это грузовая автомашина.

Решение:

Пусть событие Примеры решения задач по теории вероятности — к бензоколонке подъехала для заправки автомашина; Примеры решения задач по теории вероятности — подъехала грузовая автомашина; Примеры решения задач по теории вероятности — подъехала легковая автомашина. Тогда

Примеры решения задач по теории вероятности

Пример №15

  • При лечении больному необходимо принять лекарства двух видов одинаковой дозировки. Вероятность того, что больному станет легче от первого лекарства равна 0,9; от второго — 0,97. Больному стало легче. Какова вероятность того, что на его состояние повлияло первое лекарство?

Решение:

Рассмотрим равновероятные гипотезы Примеры решения задач по теории вероятности={больной принимает первое лекарство}, Примеры решения задач по теории вероятности= {больной принимает второе лекарство}.

Примеры решения задач по теории вероятности

Также рассмотрим событие Примеры решения задач по теории вероятности = {больному стало легче}. Условные вероятности:

Примеры решения задач по теории вероятности

Поскольку известно событие, которое наступило, необходимо использовать формулы Байеса. Вероятность того, что на состояние больного повлияло первое лекарство, будет найдена по формуле:

Примеры решения задач по теории вероятности

Пример №16

  • На огороде посажены семена гороха и перца в одинаковых пропорциях. Всхожесть гороха равна 0,06. Всхожесть перца составляет 0,15. Растение проросло, какова вероятность, что это взошел перец?

Решение:

Рассмотрим взаимоисключающие гипотезы Примеры решения задач по теории вероятности={посажено семя гороха}, Примеры решения задач по теории вероятности={посажено семя перца}.

Примеры решения задач по теории вероятности

Также рассмотрим событие Примеры решения задач по теории вероятности = {всхожесть семени}.

Примеры решения задач по теории вероятности
Примеры решения задач по теории вероятности

Поскольку известно событие, которое наступило (растение проросло), необходимо использовать формулы Байеса. Вероятность того, что взошел перец, будет найдена по формуле:

Примеры решения задач по теории вероятности

Схема Бернулли

Под испытанием следует понимать эксперимент со случайным исходом.

Пусть производятся Примеры решения задач по теории вероятности независимых испытаний. Известно, что в каждом испытании возможны два исхода: либо происходит событие Примеры решения задач по теории вероятности (успех), либо событие Примеры решения задач по теории вероятности не происходит (неудача). Данная схема называется схемой Бернулли. При том предполагается, что вероятность Примеры решения задач по теории вероятности успеха и Примеры решения задач по теории вероятности неудачи не изменяются при переходе от испытания к испытанию.

Примеры решения задач по теории вероятности

Задача. Известно, что левши составляют 1% от жителей Земли. Найти вероятность того, что среди 200 человек найдется хотя бы 3 левши.

Наивероятнейшее число появления события Примеры решения задач по теории вероятности в Примеры решения задач по теории вероятности независимых испытаниях Примеры решения задач по теории вероятности — число испытаний, при котором достигается максимальная вероятность в Примеры решения задач по теории вероятности независимых испытаниях:

Примеры решения задач по теории вероятности

Пример №17

  • Прибор состоит из четырех узлов. Вероятность безотказной работы в течение смены для каждого узла равна 0,85. Узлы выходят из строя независимо друг от друга. Найти вероятность того, что в течение смены откажут ровно два узла.

Решение:

Из условия задачи

Примеры решения задач по теории вероятности

Используя формулу Бернулли, получим:

Примеры решения задач по теории вероятности

Пример №18

  • Определить вероятность того, что в семье, имеющей пять детей, будет три девочки и два мальчика. Вероятности рождения мальчика и девочки предполагаются одинаковыми.

Решение:

Из условия задачи

Примеры решения задач по теории вероятности

Используя формулу Бернулли, получим:

Примеры решения задач по теории вероятности

Пример №19

  • В условиях предыдущей задачи найти вероятность того, что среди детей будет не больше трех девочек.

Решение:

Примеры решения задач по теории вероятности

Пример №20

  • Вероятность попадания в цель стрелком равна 0,75. Сделано 20 выстрелов. Определить наивероятнейшее число попаданий в цель.

Решение:

Здесь

Примеры решения задач по теории вероятности

Следовательно, применим формулу

Примеры решения задач по теории вероятности

Получим:

Примеры решения задач по теории вероятности

т.е.

Примеры решения задач по теории вероятности

Наивероятнейшее число попаданий в цель равно 15.

Предельные теоремы в схеме Бернулли

Схема независимых испытаний служит вероятностной моделью многих реальных явлений, поэтому представляет значительный интерес задача подсчета вероятности Примеры решения задач по теории вероятности. При больших значениях Примеры решения задач по теории вероятности и Примеры решения задач по теории вероятности есть трудности в получении численного значения этих вероятностей.

Естественным образом возникает задача нахождения асимптотических форм, позволяющих приближенно вычислять вероятности Примеры решения задач по теории вероятности для достаточно больших Примеры решения задач по теории вероятности и малых Примеры решения задач по теории вероятности.

Теорема (Локальная предельная теорема Пуассона). Если Примеры решения задач по теории вероятности, так что Примеры решения задач по теории вероятности то

Примеры решения задач по теории вероятности

Теорема (Интегральная предельная теорема Пуассона). В схеме Бернулли для любого натурального числа Примеры решения задач по теории вероятности, любого Примеры решения задач по теории вероятности и для любого числового множества Примеры решения задач по теории вероятности справедливо неравенство:

Примеры решения задач по теории вероятности

Теперь рассмотрим асимптотическую формулу для вероятности не близкой к нулю.

Теорема (Локальная предельная теорема Муавра-Лапласа). Если в схеме Бернулли Примеры решения задач по теории вероятности, то для любого положительного с равномерно по всем Примеры решения задач по теории вероятности таких:

Примеры решения задач по теории вероятности

справедливо соотношение:

Примеры решения задач по теории вероятности

где Примеры решения задач по теории вероятности — бесконечно малая величина при Примеры решения задач по теории вероятности.

Теорема (Интегральная предельная теорема Муавра-Лапласа). При выполнении условий предыдущей теоремы равномерно Примеры решения задач по теории вероятности выполнено предельное соотношение:

Примеры решения задач по теории вероятности

Заметим, что при использовании интегральной формулы Муавра-Лапласа формула обеспечивает достаточную точность уже при Примеры решения задач по теории вероятности.

По полученным теоремам составим таблицу.

Примеры решения задач по теории вероятности

Пример №21

  • В каждом из 5 опытов событие Примеры решения задач по теории вероятности может появится с вероятностью Примеры решения задач по теории вероятности. Найти вероятность того, что событие Примеры решения задач по теории вероятности появится 3 раза.

Решение:

Применим формулу Бернулли:

Примеры решения задач по теории вероятности

Пример №22

  • Найти вероятность того, что в 243 испытаниях событие Примеры решения задач по теории вероятности наступит ровно 70 раз, если вероятность появления этого события Примеры решения задач по теории вероятности в каждом испытании.

Решение:

Применим локальную теорему Муавра-Лапласа:

Примеры решения задач по теории вероятности

Пример №23

  • Фабрика выпускает 70% продукции I сорта. Чему равна вероятность того, что в партии из 1000 изделий число изделий I сорта будет в диапазоне [652, 760]?

Решение:

Применим интегральную теорему Муавра-Лапласа.

Примеры решения задач по теории вероятности

Отклонение относительной частоты от постоянной вероятности в независимых испытаниях

Вероятность того, что в Примеры решения задач по теории вероятности независимых испытаниях, в каждом из которых вероятность появления события равна Примеры решения задач по теории вероятности, абсолютная величина отклонения относительной частоты появления события не превысит положительного числа Примеры решения задач по теории вероятности, приближенно равна удвоенной функции Лапласа при Примеры решения задач по теории вероятности.

Примеры решения задач по теории вероятности

Относительная частота события Примеры решения задач по теории вероятности определяется равенством Примеры решения задач по теории вероятности, где Примеры решения задач по теории вероятности — число испытаний, в которых Примеры решения задач по теории вероятности наступило, Примеры решения задач по теории вероятности — общее число произвольных испытаний.

Пример №24

  • Вероятность появления события в каждом из независимых испытаний равна 0,5. Найти число испытаний Примеры решения задач по теории вероятности, при котором с вероятностью 0,7698 можно ожидать, что относительная частота появления события отклонится от его вероятности по абсолютной величине не более чем на 0,02.

Решение:

Их рассмотренной формулы:

Примеры решения задач по теории вероятности

получим, что

Примеры решения задач по теории вероятности

Пример №25

  • Вероятность выигрыша на турнире по баскетболу равна 0,58. Найти количество турниров Примеры решения задач по теории вероятности, при котором с вероятностью приблизительно равной 0,9 можно ожидать, что относительная частота побед отклонится от вероятности по абсолютной величине не более чем на 0,1.

Решение:

Примеры решения задач по теории вероятности
Примеры решения задач по теории вероятности

Случайные величины и их распределения

В азартных играх интерес играющих вызывает не наступление случайного исхода, а связанный с ним выигрыш или проигрыш, т.е. определенная числовая величина, которая соответствует исходу.

Примером случайной величины может быть число очков, выпавших при подбрасывании кубика, число бракованных изделий среди общего числа изделий.

Случайная величина Примеры решения задач по теории вероятности есть число, которое ставится в соответствие каждому возможному исходу эксперимента, т.е. ее можно рассматривать как функцию Примеры решения задач по теории вероятности на пространстве элементарных событий Примеры решения задач по теории вероятности.

Пусть Примеры решения задач по теории вероятности — произвольное вероятностное пространство. Случайной величиной называется функция Примеры решения задач по теории вероятности, такая что для любого Примеры решения задач по теории вероятности выполняется следующее:

Примеры решения задач по теории вероятности

Определим функцию распределения случайной величины, которая несет всю информацию, заложенную в случайной величине.

Функцией распределения случайной величины Примеры решения задач по теории вероятности называется функция

Примеры решения задач по теории вероятности

такая, что для любого действительного Примеры решения задач по теории вероятности выполняется:

Примеры решения задач по теории вероятности

Любая функция распределения обладает следующими свойствами:

1) Примеры решения задач по теории вероятности

2) существуют пределы Примеры решения задач по теории вероятности.

3) функция непрерывна слева, т.е. Примеры решения задач по теории вероятности.

4) Примеры решения задач по теории вероятности

5) Примеры решения задач по теории вероятности

Классификация дискретных случайных величин

Дискретная случайная величина — это случайная величина, которая принимает не более чем счетное число значений.

Пусть ее значения Примеры решения задач по теории вероятности… такие, что Примеры решения задач по теории вероятности….

Тогда

Примеры решения задач по теории вероятности

Совокупность значений Примеры решения задач по теории вероятности и соответствующих вероятностей Примеры решения задач по теории вероятности называется распределением дискретной случайной величины.

Закон распределения такой величины может быть таблично следующим образом:

Примеры решения задач по теории вероятности
Примеры решения задач по теории вероятности

Закон распределения дискретной случайной величины можно изобразить графически, для чего в прямоугольной системе координат строят точки Примеры решения задач по теории вероятностиПримеры решения задач по теории вероятности, где Примеры решения задач по теории вероятности — возможные значения Примеры решения задач по теории вероятности — соответствующие вероятности; и соединяют их отрезками прямых. Полученную фигуру называют многоугольником распределения (полигоном).

Пример №26

  • Найти функцию распределения случайной величины, которая представлена таблицей:
Примеры решения задач по теории вероятности

Решение:

Запишем функцию распределения в виде сложной функции:

Примеры решения задач по теории вероятности
  • Два шахматиста Миша и Коля делают по одному ходу. Вероятность удачного хода Мишей равна 0,7, а для Коли эта вероятность равна 0,76. Найти ряд распределения суммарного числа удачных ходов шахматистами.
Примеры решения задач по теории вероятности

Пример №26.7

  • Партия изделий содержит 10% нестандартных. Пусть случайная величина Примеры решения задач по теории вероятности — число стандартных изделий в партии из пяти изделий. Требуется составить закон распределения случайной величины и записать функцию распределения.

Решение:

Случайная величина Примеры решения задач по теории вероятности может принимать значения Примеры решения задач по теории вероятности.

ВероятностьПримеры решения задач по теории вероятности найдем по формуле Бернулли:

Примеры решения задач по теории вероятности

По условию задачи

Примеры решения задач по теории вероятности
Примеры решения задач по теории вероятности

Запишем закон распределения случайной величины:

Примеры решения задач по теории вероятности

Найдем функцию распределения. По определению:

Примеры решения задач по теории вероятности
Примеры решения задач по теории вероятности

Окончательно получим:

Примеры решения задач по теории вероятности

Классификация абсолютно непрерывных случайных величин

Если случайная величина Примеры решения задач по теории вероятности принимает любые значения из некоторых интервалов или отрезков числовой оси, то она называется непрерывной случайной величиной. Примерами такой величины являются дальность полета снаряда, время безотказной работ прибора.

Плотностью распределения вероятностей случайной величины Примеры решения задач по теории вероятности в точке Примеры решения задач по теории вероятности Примеры решения задач по теории вероятности называется предел:

Примеры решения задач по теории вероятности

Теорема. Для того, чтобы случайная величина Примеры решения задач по теории вероятности была абсолютно непрерывной, необходимо и достаточно, чтобы:

Примеры решения задач по теории вероятности

Распределение случайной величины Примеры решения задач по теории вероятности называется непрерывным, а сама случайная величина — абсолютно непрерывной случайной величиной, если

Примеры решения задач по теории вероятности

где Примеры решения задач по теории вероятности — минимальная Примеры решения задач по теории вероятности — алгебра.

Свойства плотности распределения:

Примеры решения задач по теории вероятности

Эти три свойства выполняются для любой точки непрерывности функции.

Примеры решения задач по теории вероятности
Примеры решения задач по теории вероятности
Примеры решения задач по теории вероятности
Примеры решения задач по теории вероятности

Пример №27