Для связи в whatsapp +905441085890

Аксиоматический метод со времен Античности до работ Д. Гильберта

Предмет: Философия

Тип работы: Реферат

У вас нет времени или вам не удаётся понять эту тему? Напишите мне в whatsapp, согласуем сроки и я вам помогу!

На странице рефераты по философии вы найдете много готовых тем для рефератов по предмету «Философия».

Дополнительные готовые рефераты на темы:

  1. Периодизация истории математики А.Н. Колмогорова с позиций математики конца XX в.
  2. Математика Древнего Египта с позиций математики XX в.
  3. Математика Древнего Вавилона с позиций математики XX в.
  4. Знаменитые задачи древности (удвоение куба, трисекция угла, квадратура круга) и их значение в развитии математики
  5. Апории Зенона в свете математики XIX—XX вв.
  6. Рождение математического анализа в трудах И. Ньютона
  7. Рождение математического анализа в трудах Г. Лейбница
  8. Рождение аналитической геометрии и ее роль в развитии математики в XVII в.
  9. Нестандартный анализ: предыстория и история его рождения
  10. Качественная теория дифференциальных уравнений в XIX — начале XX в.

Введение

Аксиоматический метод – фундаментальнейший метод организации и умножения научного знания в самых разных его областях – сформировался на протяжении более чем двухтысячелетней истории развития науки. Особую роль аксиоматический метод играет в математической науке. Можно сказать, что математическая наука достигает совершенства лишь тогда, когда ей удаётся пользоваться аксиоматическим методом, т.е., когда наука принимает характер аксиоматической теории. Более того, развитие науки в двадцатом столетии показало, что математика выделяется в системе наук именно тем, что она, по существу, единственная, использующая аксиоматический метод чрезвычайно широко, и что этот метод в значительной мере обуславливает поразительную эффективность математики в процессе познания окружающего мира и преобразующего воздействия на него.

 Основные этапы развития аксиоматического метода в науке

Формирование современного понимания существа аксиоматического метода происходило на протяжении более чем двухтысячелетней истории развития науки.

Истинное начало науки о геометрических фигурах и телах, конечно же, теряется в глубине тысячелетий. Начальное оформление первых геометрических представлений обычно связывают с древнейшими культурами Вавилона и Египта (3-2 тысячелетия до н.э.). С VII века до н.э. начинается пириод развития геометрии трудами греческих учёных. Пифагорейская школа в VI-V веках до н.э. продолжила геометрические исследования. Её основоположник Пифагор (560-470 или 580-500 г.г. до н.э.) в молодости около двадцати лет учился мудрости в Египте, ещё десяти – в Вавилоне. Несомненно, что в школе Пифагора геометрия сделала первые шаги от узкопрактических утилитарных задач, от геометрии измерения участков земли к обобщениям, абстракциям и рассуждениям.

Величайший философ античности Платон (428-348 г.г. до н.э.) создатель Академии, по-видимому, первым отчётливо поставил задачу построения всего научного знания вообще и геометрии в частности дедуктивным образом. Трактаты и учебники по геометрии появились ещё до Платона – известны руководства Гиппократа Хиосского, Демокрита, Февдия. но лишь Платон потребовал, чтобы во главу всякой отрасли знания были поставлены понятия и положения, из которых всё остальные, что к этой отрасли относятся должно вытекать кА их следствия. Но эта постановка у Платона всё же весьма расплывчата и контуры её лишь угадываются из всего его учения, построенного на полумистической базе.

Гениальный ученик Платона великий Аристотель (384-322 г.г. до н.э.), перешагнул через мистические догмы Платона, выявил его рациональные требования научного обоснования всякого знания всякой научной деятельности. Он охватил почти все достигнутые для его времени отрасли знания, стал основоположником научного метода и многих наук. Наука, по Аристотелю, представляет собой последовательность предложений, относящихся к некоторой области. Среди этих предложений имеются основные, которые настолько очевидны, что не требуют доказательств. Это – аксиомы. Остальные предложения должны быть выведены из них. Это – теоремы. Эта научная доктрина Аристотеля была принята как руководство к действию, прежде всего, математики. И когда примерно полстолетия спустя появился гениальный труд Евклида «Начала», то в его структуре явно просматривалась печать схемы Аристотеля.

Более 2000 лет «Начала» служили единственным руководством, по которому учились геометрии юноши и взрослые в странах запада и востока. Это была первая в истории человечества поистине научная книга: в ней геометрия была представлена как аксиоматическая теория, исходя из тех принципов, формулировки которых восходили к Аристотелю и Платону.

Наибольший интерес исследователей евклидовой системы обоснования геометрии на протяжении многих веков вызывал V постулат. И чтобы всякий раз, когда прямая при пересечении с двумя другими прямыми образует с ними внутренние односторонние углы, сумма которых меньше двух прямых, эти прямые пересекались с той стороной с которой эта сумма меньше двух прямых. Пространственность его формулировки толкала исследователей на то, чтобы доказать его, вывести из остальных постулатов и аксиом и тем самым исключить его из числа постулатов.

Такие исследования велись в элленическую эпоху (Посидоний, I в до н.э., Санкери, XVIII в., Ламберт, XVIII в.). Это была эпоха Евклида в истории обоснования геометрии, эпоха его продолжателей и усовершенствователей, период наивно-аксиоматического построения геометрии. В начале XIX века вместе с безуспешными попытками доказательства V постулата она подходит к концу. Она рождала из себя выдающееся открытие – новое понимание оснований геометрии и новый шаг в понимании сути аксиоматического метода.

11 февраля 1826 г. в заседании Физико-математического факультета Казанского университета профессор Н.И. Лобачевский (1792-1856 г.г.) сообщил об открытие: V постулат Евклида лежит в основе теории параллельных прямых. Значения открытия Лобачевского неизмеримо велико для геометрии. Во-первых, он «закрыл» проблему V постулата, стоявшую перед геометрами 2000 лет, доказав, что V постулат логически не зависит от остальных аксиом геометрии, т.е. не является их необходимым следствием. Во-вторых, V постулат потому именно не вытекает из остальных постулатов, что наряду с геометрией Евклида, в которой этот постулат верен, возможна другая «воображаемая», геометрия, в которой V постулат не выполняется. В-третьих, открытие Лобачевского дало новый взгляд на суть аксиоматического метода, который получил своё дальнейшее развитие. Аксиомы – это вовсе не самоочевидные истины. Это – утверждения о каких-то первоначальных понятиях, принимаемые без доказательств и кладущиеся в основе теории, из которых все дальнейшие утверждения теории логически выводятся. Истинно то, что может быть логически доказано (выведено) из принятых аксиом. И, в-четвёртых, открытие новой, как её обычно называют, неевклидовой геометрии положило конец существовавшеё до Лобачевского точке зрения, согласно которой евклидова геометрия представлялась единственно мыслимым учением о пространстве.

 Понятие аксиоматической теории

Исторический процесс развития взглядов на существо математики как науки привел к формированию фундаментальной концепции аксиоматического метода и понятия аксиоматической теории. Суть их состоит в следующем. Выбирается ряд первоначальных понятий, которые не определяются и используются без объяснения их смысла. Вместе с тем, все другие понятия, которые будут использоваться, должны быть строго определены через первоначальные неопределённые понятия и через понятия, смысл которых был определён раньше. Высказывания, определяющее таким способом значение понятия, называется определением, а само понятие, смысл которого определён, носит название определяемого понятия. Евклид сделал попытку строго определить все первоначальные понятия геометрии: точки, прямой, плоскости и т.д. Но совершенно ясно, что эти понятия должны определяться через какие-то другие, те в свою очередь, должны опираться на следующие понятия, и так далее, так что процесс бесконечен. Таким образом, первоначальные понятия аксиоматической теории не определяются.

Совершенно аналогична ситуация и с утверждениями о первоначальных и об определяемых понятиях. Невозможно доказать все истинные утверждения об этих понятиях, потому что при доказательстве нужно опираться на какие-то предыдущие утверждения, при их доказательстве, в свою очередь, — на следующие, и так без конца. Поэтому и здесь необходимо выделить некоторые утверждения и объявить их истинными. Такие утверждения, принимаемые без доказательства, называются аксиомами аксиоматической теории. Совокупность аксиом обозначается буквой . Вопрос о том, какие утверждения о первоначальных понятиях выбираются в качестве аксиом, заслуживает специального рассмотрения. Евклид в качестве пяти своих аксиом (постулатов) выбрал наиболее, на его взгляд, очевидные утверждения о точках и прямых, т.е. такие утверждения, которые многократно подтверждались практическим опытом человечества.

Итак, после того, как система аксиом аксиоматической теории выбрана, приступают к развитию самой аксиоматической теории. Для этого, исходя из выбранной системы аксиом, пользуясь правилами логического умозаключения, выводятся новые утверждения о первоначальных понятиях, а также об определяемых понятиях. Получаемые утверждения называются теоремами данной аксиоматической теории.

Можно более точно сформировать понятие теоремы аксиоматической теории и её доказательства. Доказательством утверждения С, сформулированного в терминах данной теории, называется конечная последовательность В1, В2, …, В5 высказываний теории, в которой каждое высказывание есть либо аксиома, либо оно получено из одного или более предыдущих высказываний данной последовательности по логическим правилам вывода, а последнее высказывание В5 есть утверждение С. При этом, С называется теоремой или доказуемым утверждением аксиоматической теории. Обозначение: |- С. Каждая аксиома аксиоматической теории является её теоремой доказательство аксиомы есть одноэлементная последовательность, состоящая из неё самой.

Важным является следующее обобщение понятия теоремы. Пусть Г – конечное множество высказываний некоторой аксиоматической теории. Утверждение С теории, называется выводами из Г (обозначается Г |-), если существует конечная последовательность высказываний В1, В2, …, В5, называемая выводом С из Г, каждое высказывание которой является либо аксиомой, либо высказыванием из Г, либо получено из одного или более предыдущих высказываний этой последовательности по какому-либо из правил вывода рассматриваемой теории, а последнее высказывание В5 есть утверждение С. Утверждение из множества Г называются гипотезами. В частном случае, когда Г=, вывод С из Г превращается в доказательство утверждения С, а С становится теоремой аксиоматической теории.

Итак, под аксиоматической теории, построенной на основе системы аксиом , понимается совокупность всех теорем, доказываемых, исходя из этой системы аксиом. Такую совокупность теорем обозначают Тh ().

Изложенный метод построения математической теории носит название аксиоматического или дедуктивного метода. Выбор системы аксиом есть дело условия: одно и тоже утверждение теории может быть аксиомой, если оно так выбрано, а может выступать в качестве теоремы, если выбор аксиом осуществлён по-иному. Итак, если в обыденной жизни за термином «аксиома» утвердился его изначальный смысл (в переводе с греческого «аксиома» означает «достойный признания), именно смысл самоочевидной, безусловной истины, то в математике, при построении аксиоматических теорий, аксиомы условны. Они «достойны признания» не сами по себе, не ввиду их самоочевидной истинности, а потому что на их основе строится та или иная аксиоматическая теория. При новом выборе системы аксиом прежние аксиомы становятся теоремами. Коротко говоря, аксиомы – это то, из чего выводятся теоремы, а теоремы – то, что выводится из аксиомы.

Аксиоматический метод в Древней Греции

Аксиоматический метод появился в Древней Греции, а сейчас применяется во всех теоретических науках, прежде всего в математике.

Аксиоматический метод построения научной теории заключается в следующем : выделяются основные понятия, формулируются аксиомы теории, а все остальные утверждения выводятся логическим путём, опираясь на них.

Основные понятия выделяются следующим образом. Известно, что одно понятие должно разъясняться с помощью других, которые, в свою очередь, тоже определяются с помощью каких-то известных понятий. Таким образом, мы приходим к элементарным понятиям, которые нельзя определить через другие. Эти понятия и называются основными.

Когда мы доказываем утверждение, теорему, то опираемся на предпосылки, которые считаются уже доказанными. Но эти предпосылки тоже доказывались, их нужно было обосновать. В конце концов, мы приходим к недоказываемым утверждениям и принимаем их без доказательства. Эти утверждения называются аксиомами. Набор аксиом должен быть таким, чтобы, опираясь на него, можно было доказать дальнейшие утверждения.

Выделив основные понятия и сформулировав аксимы, далее мы выводим теоремы и другие понятия логическим путём. В этом и заключается логическое строение геометрии. Аксиомы и основные понятия составляют основания планиметрии.

Так как нельзя дать единое определение основных понятий для всех геометрий, то основные понятия геометрии следует определить как объекты любой природы, удовлетворяющие аксиомам этой геометрии. Таким образом, при аксиоматическом построении геометрической системы мы исходим из некоторой системы аксиом, или аксиоматики. В этих аксиомах описываются свойства основных понятий геометрической системы, и мы можем представить основные понятия в виде объектов любой природы, которые обладают свойствами, указанными в аксиомах.

После формулировки и доказательства первых геометрических утверждений становится возможным доказывать одни утверждения (теоремы) с помощью других. Доказательства многих теорем приписываются Пифагору и Демокриту. Гиппократу Хиосскому приписывается составление первого систематического курса геометрии, основанного на определениях и аксиомах. Этот курс и его последующие обработки назывались «Элементы».

Потом, в III в. до н.э., в Александрии появилась книга Евклида с тем же названием, в русском переводе «Начала». От латинского названия «Начал» произошёл термин «элементарная геометрия». Несмотря на то, что сочинения предшественников Евклида до нас не дошли, мы можем составить некоторое мнение об этих сочинениях по «Началам» Евклида. В «Началах» имеются разделы, логически весьма мало связанные с другими разделами. Появление их объясняется только тем, что они внесены по традиции и копируют «Начала» предшественников Евклида.

«Начала» Евклида состоят из 13 книг. 1 — 6 книги посвящены планиметрии, 7 — 10 книги — об арифметике и несоизмеримых величинах, которые можно построить с помощью циркуля и линейки. Книги с 11 по 13 были посвящены стереометрии.

«Начала» начинаются с изложения 23 определений и 10 аксиом. Первые пять аксиом — «общие понятия», остальные называются «постулатами». Первые два постулата определяют действия с помощью идеальной линейки, третий — с помощью идеального циркуля. Четвёртый, «все прямые углы равны между собой», является излишним, так как его можно вывести из остальных аксиом. Последний, пятый постулат гласил : «Если прямая падает на две прямые и образует внутренние односторонние углы в сумме меньше двух прямых, то, при неограниченном продолжении этих двух прямых, они пересекутся с той стороны, где углы меньше двух прямых».

Пять «общих понятий» Евклида являются принципами измерения длин, углов, площадей, объёмов : «равные одному и тому же равны между собой», «если к равным прибавить равные, суммы равны между собой», «если от равных отнять равные, остатки равны между собой», «совмещающиеся друг с другом равны между собой», «целое больше части».

Далее началась критика геометрии Евклида. Критиковали Евклида по трём причинам : за то, что он рассматривал только такие геометрические величины, которые можно построить с помощью циркуля и линейки; за то, что он разрывал геометрию и арифметику и доказывал для целых чисел то, что уже доказал для геометрических величин, и, наконец, за аксиомы Евклида. Наиболее сильно критиковали пятый постулат, самый сложный постулат Евклида. Многие считали его лишним, и что его можно и нужно вывести из других аксиом. Другие считали, что его следует заменить более простым и наглядным, равносильным ему : «Через точку вне прямой можно провести в их плоскости не более одной прямой, не пересекающей данную прямую».

Исторические сведения о развитии тригонометрии

Потребность в решении треугольников раньше всего возникла в астрономии: и в течении долгого времени тригонометрия развивалась, изучалась как один из отделов астрономии.

Насколько известно, способы решения треугольников (сферических) впервые были письменно изложены греческим астрономом Гиппархом в середине 2 века до н.э. Наивысшими достижениями греческая тригонометрия обязана астроному Птоломею (2 век н.э.) , создателю геоцентрической системы мира, господствовавшей до Коперника.

Греческие астрономы не знали синусов, косинусов и тангенсов. Вместо таблиц этих величин они употребляли таблицы: позволяющие отыскать хорду окружности по стягиваемой дуге. Дуги измерялись в градусах и минутах; хорды тоже измерялись градусами (один градус составлял шестидесятую часть радиуса), минутами и секундами. Это шестидесятеричное подразделение греки заимствовали у вавилонян.

Значительных высот достигла тригонометрия и у индийских средневековых астрономов. Главным достижением индийских астрономов стала замена хорд синусами, что позволило вводить различные функции, связанные со сторонами и углами прямоугольного треугольника. Таким образом, в Индии было положено начало тригонометрии как учения о тригонометрических величинах.

Индийские ученые пользовались различными тригонометрическими соотношениями, в том числе и теми, которые в современной форме выражается как sin a + cos a = 1, sin a = cos (90 — a) sin (a + B) = sin a. cos B + cos a. sin B.

Индийцы также знали формулы для кратких углов sin na, cos na, где n=2,3,4,5.

Тригонометрия необходима для астрономических расчетов, которые оформляются в виде таблиц. Первая таблица синусов имеется в “Сурья-сиддханте” и у Ариабхаты. Она приведена через 3 45. Позднее ученые составили более подробные таблицы: например, Бхаскара приводит таблицу синусов через 1.

Южноиндийские математики в 16 веке добились больших успехов в области суммирования бесконечных числовых рядов. По-видимому, они занимались этими исследованиями, когда искали способы вычисления более точных значений числа П. Нилаканта словесно приводит правила разложения арктангенса в бесконечный степенной ряд. А в анонимном трактате “Каранападдхати” (“Техника вычислений”) даны правила разложения синуса и косинуса в бесконечные степенные ряды. Нужно сказать, что в Европе к подобным результатам подошли лишь в 17-18 веках. Так, ряды для синуса и косинуса вывел И. Ньютон около 1666г., а ряд арктангенса был найден Дж Грегори в 1671г. и Г. В. Лейбницем в 1673г.

В 8 в. ученые стран Ближнего и Среднего Востока познакомились с трудами индийских математиков и астрономов и перевели их на арабский язык. В середине 9 века среднеазиатский ученый аль-Хорезми написал сочинение “Об индийском счете”. После того, как арабские трактаты были переведены на латынь, многие идеи индийских математиков стали достоянием европейской, а затем и мировой науки.

Заключение

По результатам проведённого курсового исследования по теме «Аксиоматический метод» можно сделать следующие выводы.

Аксиоматический метод – фундаментальнейший метод организации и умножения научного знания в самых разных его областях – сформировался на протяжении более чем двухтысячелетней истории древней науки. У истоков идеи аксиоматического метода стоят титаны древнегреческой мысли Платон, Аристотель, Евклид.

Особую роль аксиоматический метод играет в математической науке. Хотя математика в наше время и является чрезвычайно обширной наукой знаний, имеющей многочисленные разделы и на первый взгляд разобщённые направления исследования, всё-таки математика – это единая наука. Её предмет исследований множество математических структур, её основной метод – аксиоматический метод. Можно сказать, что математическая наука достигает совершенства лишь тогда, когда ей удаётся пользоваться аксиоматическим методом, т.е. когда наука принимает характер аксиоматической теории. Более того, развитие наук в двадцатом столетии показало, что математика выделяется в системе наук именно тем, что она, по существу, единственная, использующая аксиоматический метод чрезвычайно широко, и что этот метод в значительной мере обуславливает поразительную эффективность математики в процессе познания окружающего мира и преобразующего воздействия на него.

Список литературы

1.Базылев В.Т., Дуничев К.И. Геометрия Учебное пособие для студентов физ.-мат. факультетов пединститутов. — М., «Просвещение» 1975.

2.Игошин В.И. Основания геометрии – Саратов, «Научная книга», 2004.

3.Игошин В.И. Векторная алгебра – Саратов, «Научная книга», 2005.

4.Столл Р. Множества. Логика. Аксиоматические теории – М., «Просвещение», 1968.

5.Метод аксиоматический – В кн. «Философская энциклопедия», т. 3 – М Сов. Энциклопедия, 1964.