Для связи в whatsapp +905441085890

Электромагнетизм

Основные формулы электромагнетизма

Кратность электрического заряда

Здесь q — заряд (Кл), N — число не скомпенсированных элементарных зарядов в заряде q (безразмерное), — элементарный заряд (Кл).

Поверхностная плотность заряда

Здесь — поверхностная плотность заряда , q — заряд на поверхности (Кл), S — площадь этой поверхности .

Закон Кулона

Здесь F — сила взаимодействия точечных зарядов (Н), — коэффициент пропорциональности, и — модули взаимодействующих зарядов (Кл), — относительная диэлектрическая проницаемость среды (безразмерная), —электрическая постоянная, r — расстояние между зарядами (м).

Напряженность электрического поля

Здесь Е — напряженность электрического поля (Н/Кл или В/м), F — сила, действующая на заряд (Н), q — заряд (Кл).

Напряженность поля точечного заряда

Здесь Е — напряженность поля (Н/Кл или В/м), k — коэффициент пропорциональности , q — модуль заряда (Кл), — относительная диэлектрическая проницаемость среды (безразмерная), — электрическая постоянная (Ф/м), r — расстояние от точки с напряженностью Е до заряда q (м).

Напряженность поля бесконечной равномерно заряженной плоскости

Здесь Е — напряженность электрического поля (В/м), — поверхностная плотность зарядов на плоскости , £0— электрическая постоянная (Ф/м), — диэлектрическая проницаемость среды (безразмерная).

Напряженность поля двух разноименно и равномерно заряженных плоскостей с одинаковой поверхностной плотностью зарядов (напряженность поля плоского конденсатора)

Все величины те же, что и в предыдущей формуле.

Работа перемещения заряда в однородном электрическом поле

Здесь А — работа перемещения заряда (Дж), Е — напряженность однородного поля (Н/Кл или В/м), q — перемещаемый заряд (Кл), d — проекция перемещения на силовую линию однородного поля (м).

Потенциал электрического поля

Здесь — потенциал электрического поля (В), — потенциальная энергия заряда (Дж), q — заряд, обладающий этой энергией в электрическом поле (Кл).

Потенциал поля точечного заряда

Все величины те же, что и в аналогичной формуле напряженности.

Разность потенциалов

Здесь — разность потенциалов между двумя точками поля (В), U — напряжение (В), А — работа перемещения заряда (Дж), q — перемещаемый заряд (Кл).

Связь напряженности с разностью потенциалов в однородном электрическом поле

Здесь Е — напряженность электрического поля (Н/Кл или В/м), — разность потенциалов между двумя точками поля (В), U — напряжение между этими точками (В), d — проекция расстояния между этими точками на силовую линию поля (м).

Электроемкость проводника

Здесь С — емкость проводника (Ф), q — заряд проводника (Кл), — его потенциал (В).

Емкость сферического проводника

Здесь С — емкость сферического проводника (Ф), — электрическая постоянная (Ф/м), — относительная диэлектрическая проницаемость среды (безразмерная), R — радиус сферы (м).

Емкость конденсатора

Здесь С — емкость конденсатора (Ф), q — его заряд (Кл), — разность потенциалов между его обкладками (В), U — напряжение между обкладками (В).

Емкость плоского конденсатора

Здесь С — емкость плоского конденсатора (Ф), — электрическая постоянная (Ф/м), — относительная диэлектрическая проницаемость среды (безразмерная), S — площадь обкладок конденсатора , d — расстояние между обкладками (м).

Последовательное соединение конденсаторов

q — одинаков на всех конденсаторах

Если все конденсаторы имеют одинаковую емкость С, то

Здесь q — заряд конденсаторов (Кл), — общее напряжение на батарее конденсаторов (В), — напряжения на отдельных конденсаторах (В), N — число конденсаторов (безразмерное), — общая емкость батареи конденсаторов (Ф), — емкости отдельных конденсаторов (Ф).

Параллельное соединение конденсаторов

U — одинаково на всех конденсаторах

Если все конденсаторы имеют одинаковую емкость С, то

Здесь U — напряжение на конденсаторах (В), — общий заряд батареи конденсаторов (Кл), — заряды отдельных конденсаторов (Кл), N — число конденсаторов (безразмерное), — емкость батареи конденсаторов (Ф), , — емкости отдельных конденсаторов (Ф).

Формулы энергии электрического поля проводника

Здесь — энергия электрического поля (Дж), С — емкость проводника (Ф), — потенциал проводника (В), q — заряд проводника (Кл).

Формулы энергии электрического поля конденсатора

Здесь — энергия электрического поля конденсатора (Дж), С — емкость конденсатора (Ф), q — заряд на его обкладках (Кл), U — напряжение на обкладках конденсатора (В).

Формула энергии системы точечных зарядов

Здесь — энергия системы N точечных зарядов (Дж), — заряды, входящие в систему (Кл), — потенциалы полей, созданных в точке, где находится один из зарядов, остальными зарядами системы (В).

Формулы силы тока

Здесь I — сила постоянного тока (A), q — заряд, прошедший через поперечное сечение проводника (Кл), t — время прохождения заряда (с), n — концентрация свободных электронов , е — модуль заряда электрона (Кл), v — скорость упорядоченного движения электронов по проводнику (м/с), S — площадь поперечного сечения проводника .

Формулы плотности тока

Здесь j — плотность тока , I — сила тока (A), S — площадь поперечного сечения проводника , п — концентрация свободных электронов в проводнике , е — модуль заряда электрона (Кл), v — скорость упорядоченного движения свободных электронов (м/с).

Формулы сопротивления проводника

Здесь R — сопротивление проводника (Ом), U — напряжение на нем (В), I — сила тока в проводнике (А), — удельное сопротивление (Ом • м), l — длина проводника (м), S — площадь поперечного сечения проводника .

Зависимость сопротивления металлического проводника от температуры

Здесь R — сопротивление проводника при температуре t °C (Ом), — сопротивление проводника при О °C (Ом), а — температурный коэффициент сопротивления , t — температура по шкале Цельсия, — изменение абсолютной температуры проводника при нагревании от О °C = 273 К до абсолютной температуры Т (К).

Закон Ома для однородного участка цепи

Здесь I — сила тока (A), U — напряжение (В), R — сопротивление участка (Ом).

Последовательное соединение проводников

I — одинакова во всех проводниках

Если все проводники имеют одинаковое сопротивление, то

для двух последовательных проводников

Здесь I — сила тока (А), — общее напряжение на всех последовательно соединенных проводниках (В), ,…, — напряжения на отдельных проводниках (В), — общее сопротивление всех последовательно соединенных проводников (Ом), — сопротивления отдельных проводников (Ом), N — количество проводников (безразмерное).

Параллельное соединение проводников

U — одинаково на всех проводниках

Если все проводники имеют одинаковое сопротивление, то

общее сопротивление двух параллельных проводников

общее сопротивление трех параллельных проводников

— для двух параллельных проводников

Здесь U — напряжение на проводниках (В), — сила тока в неразветвленном участке цепи (А), — сила тока в отдельных проводниках (А), — общее сопротивление параллельных проводников (Ом), — сопротивления отдельных проводников (Ом), N — количество проводников (безразмерное).

Закон Ома для неоднородного участка цепи

Здесь I — сила тока (А), — разность потенциалов на концах участка (В), — ЭДС, действующая в участке (В), R — сопротивление участка (Ом).

Формула ЭДС

Здесь — ЭДС (В), — работа сторонних сил (Дж), q — перемещаемый заряд (Кл).

Закон Ома для всей цепи

в случае соединенных последовательно одинаковых источников тока

в случае соединенных параллельно одинаковых источников тока

Здесь I — сила тока в цепи (А), — ЭДС источника тока (В), R — сопротивление внешней части цепи (Ом), r — внутреннее сопротивление или сопротивление источника тока (Ом), N — количество одинаковых источников тока (безразмерное).

Сила тока короткого замыкания

при R = О

Все величины названы в предыдущей формуле.

Расчет сопротивления шунта к амперметру

Здесь — сопротивление шунта (Ом), — сопротивление амперметра (Ом), — число, показывающее, во сколько раз измеряемая амперметром сила тока I больше силы тока , на которую он рассчитан (безразмерное число).

Расчет добавочного сопротивления к вольтметру

Здесь — добавочное сопротивление (Ом), — сопротивление вольтметра (Ом), — число, показывающее, во сколько раз измеряемое напряжение U больше напряжения , на которое рассчитан вольтметр (безразмерное число).

Работа тока

Здесь А — работа тока (Дж), U — напряжение на участке цепи (В), I — сила тока в цепи (A), t — время прохождения тока (с), q — прошедший по цепи заряд (Кл), — разность потенциалов на концах участка цепи (В), R — сопротивление участка цепи (Ом), — ЭДС источника тока (В), Р — мощность тока (Вт).

Мощность тока

Здесь Р — мощность тока (Вт), U — напряжение (В), I — сила тока (A), R — сопротивление (Ом), — ЭДС источника тока (В), А — работа тока (Дж), t — время (с).

Закон Джоуля — Ленца

Здесь Q — количество теплоты (Дж). Остальные величины названы в предыдущей формуле.

Коэффициент полезного действия (КПД) электрической цепи

Здесь — КПД электрической цепи (% или безразмерный), U — напряжение на внешнем участке цепи (В), R — сопротивление внешнего участка цепи (Ом), r — внутреннее сопротивление или сопротивление источника тока (Ом), — ЭДС источника тока (В).

Закон Фарадея для электролиза

Здесь m — масса вещества, выделившегося на электроде (кг), k — электрохимический эквивалент этого вещества (кг/Кл), q — заряд, прошедший через электролит, I — сила тока в электрохимической ванне (A), t — время электролиза (с), F — число Фарадея (Кл/моль), М — молярная масса выделившегося вещества (кг/моль, n — валентность этого вещества (безразмерная).

Формулы индукции магнитного поля

Здесь В — индукция магнитного поля (Тл), — максимальный момент сил, вращающих контур с током в магнитном поле (Н • м), I — сила тока в контуре (A), S — площадь контура — максимальная сила Ампера, действующая на проводник с током в магнитном поле (Н), l — длина проводника в магнитном поле (м).

Формула силы Ампера

Здесь — сила Ампера, действующая на проводник с током в магнитном поле (Н), В — индукция магнитного поля (Тл), I — сила тока в проводнике (А), l — длина проводника в магнитном поле (м), — угол между направлением тока в проводнике и вектором магнитной индукции (рад).

Формула момента сил, вращающих контур с током в магнитном поле

Здесь М — момент сил, вращающих контур с током в магнитном поле (Н • м), В — индукция магнитного поля (Тл), I — сила тока в контуре (A), S — площадь контура — угол между нормалью к плоскости контура и вектором магнитной индукции (рад).

Формула силы Лоренца, действующей на заряд, движущийся в магнитном попе

Здесь — сила Лоренца, действующая на заряд, движущийся в магнитном поле (Н), В — индукция магнитного поля (Тл), q — заряд (Кл), v — скорость заряда (м/с), — угол между векторами магнитной индукции и скорости (рад).

Формула магнитного потока

Здесь Ф — магнитный поток сквозь поверхность (Вб), S — площадь поверхности — угол между нормалью к поверхности и вектором магнитной индукции (рад), L — индуктивность контура (Гн), I — сила тока в контуре (А).

Формула ЭДС электромагнитной индукции

Здесь — ЭДС индукции в контуре (В), — скорость изменения магнитного потока, пересекающего контур (Вб/с), N — число витков в контуре (безразмерное), — первая производная магнитного потока по времени (Вб/с).

Формула ЭДС индукции в проводнике, движущемся поступательно в магнитном поле

Здесь — ЭДС индукции в проводнике (В), В — индукция магнитного поля (Тл), v — скорость проводника в магнитном поле (м/с), l — длина проводника в магнитном поле (м), — угол между векторами скорости и магнитной индукции (рад), — максимальная ЭДС индукции, когда проводник движется перпендикулярно линиям магнитной индукции.

Формула ЭДС индукции в контуре, вращающемся в магнитном поле

Здесь — ЭДС индукции во вращающемся контуре (В), В — индукция магнитного поля (Тл), — угловая скорость вращения (рад/с), S — площадь контура, N — число витков в контуре (безразмерное), — угол между вектором индукции и нормалью к плоскости контура, —максимальная ЭДС индукции, когда угол между нормалью к плоскости контура и вектором магнитной индукции равен 90°, т.е. когда плоскость контура параллельная линиям магнитной индукции.

Формула ЭДС самоиндукции

Здесь — ЭДС самоиндукции в контуре (В), L — индуктивность контура (Гн), — скорость изменения силы тока в контуре (А/с), — первая производная силы тока по времени.

Формула магнитной проницаемости магнетика

Здесь — магнитная проницаемость магнетика (безразмерная), В — индукция магнитного поля в магнетике (Тл), — индукция магнитного поля в вакууме (Тл).

Формула энергии магнитного поля

Здесь — энергия магнитного поля (Дж), L — индуктивность контура (Гн), I — сила тока в контуре (А).

Эта теория со страницы подробного решения задач по физике, там расположена теория и подробное решения задач по всем темам физики:

Задачи по физике с решением

Возможно вам будут полезны эти страницы:

Молекулярная физика основные формулы
Термодинамика в физике: основные формулы
Электростатика основные понятия, законы и формулы
Законы постоянного тока: основные формулы