Для связи в whatsapp +905441085890

Преобразования графиков функций с примерами решения и образцами выполнения

Параллельный перенос, сжатие и растяжение графиков. Построение графиков с модулями.

Графики многих функций можно получить из ранее рассмотренных с помощью элементарных геометрических преобразований: параллельного переноса, сжатия, растяжения, симметричного отображения. Рассмотрим некоторые из этих преобразований. Для каждого из элементарных преобразований предлагается два способа построения графика: с помощью преобразования графика и с помощью преобразования системы координат. Обучающийся должен выбрать тот, который кажется ему проще и овладеть им. В каждом случае считается известным график функции у = f(х).

Параллельный перенос графиков

График функции у = /(x) + Ь получается из графика функции у = f(х) с помощью его переноса на вектор b = (0; b). Действительно, в этом случае ко всем ординатам графика у = f(х) прибавляется величина b, что означает сдвиг графика вдоль оси Оу. Если b > 0, то график функции у = f(х) переносится вверх параллельно оси Oy на b, если b < 0, то график функции у = f(x) переносится вниз параллельно оси Oy на |b| (рис. 49). Заметим, что вместо переноса графика, можно перенести в противоположном направлении ось Ox (если b > 0 — вниз, если b < 0 — вверх), прибавив ко всем значениям по оси Oy величину b.

Преобразования графиков функций
Рис. 49. Построение графика функции у = f(x) + b

Пример:

График функции у = x² — 1 (рис. 50) смещен на 1 вниз параллельно оси Oy относительно графика функции у = х².

Преобразования графиков функций
Рис. 50. Построение графика функции у = x² — 1

График функции у = f(x+a) получается с помощью переноса графика функции у = f(x) на вектор а = (—а;0). Действительно, перейдя к новым координатам X = х + α, Y = у параллельным переносом вдоль оси Ox на —а, заметим, что относительно новых координат получится исходный график функции Y = f(X). Если а > 0, то старые координаты получаются из новых сдвигом направо вдоль оси Ox на α, т.к. х = X — а. Если же сдвигать график, а не систему координат, то его нужно двигать в противоположном направлении — налево. Итак, если а > 0, то график функции у = f(x) переносится налево параллельно оси Ox на а, если а < 0, то график функции у = f(x) переносится направо вдоль оси Ox на ∣α∣ (рис. 51). Вместо переноса графика можно перенести в противоположном направлении ось Oy (если α > 0 — вправо, если α < 0 — влево), отняв от всех значений по оси Ox величину а.

Пример:

График функции у = (x- 2)² смещен на 2 ед. вправо параллельно оси Ox относительно графика функции у = х². (рис. 52).

Преобразования графиков функций
Рис. 51. Построение графика функции у = f(x + а)
Преобразования графиков функций
Рис. 52. Построение графика функции у = (х — 2)²

Сжатие и растяжение графиков

График функции у = kf(x), где к ∈ R, получается с помощью ’’растяжения” графика функции у = f(x) в к раз в направлении от оси Ох. ’’Растяжение” здесь понимается как умножение на к ординат всех точек графика у = f(x)∙ При k > 1 это будет действительно растяжение в к раз от оси Ox вдоль оси Оу. При 0 < k < 1 это будет сжатие в Преобразования графиков функций раз к оси Ox вдоль оси Оу. При k ≤ -1 это будет растяжение в ∣k∣ раз с последующим симметричным отображением относительно оси Ox (перевернуть сверху вниз); при -1 ≤ k < 0 это будет сжатие в Преобразования графиков функций раз и симметрия относительно оси Ox ( рис. 53). В частности, график функции у = —f(x) получается симметричным отображением относительно оси Ox графика функции у = f(x).

Вместо преобразования графика при k > 0 можно исправить значения по оси Оу, умножив их на k. При k < 0 в этом случае пришлось бы менять направление оси, что неудобно; лучше перевернуть график сверху вниз.

График функции у = f(kx), где k ∈ R, получается с помощью ’’сжатия” графика у = f(x) в к раз в направлении к оси Оу. ’’Сжатие” здесь понимается как деление на к абсцисс всех точек графика у = f(x). Действительно, если, например, f(1) =0, то, сделав замену X = kх, Y = у, получим, что функция у = f(kx) обращается в нуль при kх = 1, т.е. при Преобразования графиков функций

Преобразования графиков функций
Рис. 53. Построение графика функции у = — 3 sin х

При k > 1 график функции у = f(x) сжимается в k раз к оси Oy вдоль оси Ох; при 0 < k < 1 график функции у = f(x) растягивается в Преобразования графиков функций раз от оси Oy вдоль оси Ох; при k ≤ — 1 исходньй график сжимается в |k| раз и симметрично отражается относительно оси Oy (слева направо); при -1 ≤ k < 0 исходный график растягивается в Преобразования графиков функций раз с последующей симметрией относительно оси Оу.

В частности, график функции у = f(-x) получается из графика функции у = f(-x) симметрией относительно оси Оу.

Вместо преобразования графика при k > 0 можно исправить значения по оси Ох, поделив их на k. При k < 0 в этом случае следует предварительно перевернуть график слева направо.

Пример:

График функции у = cos 2х получается из графика у = cos х сжатием в 2 раза к оси Оу; график функции у = ln(—х) получается из графика у = ln х симметрией относительно оси Oy ( рис. 54).

Преобразования графиков функций
Рис. 54. Построение трафика функции у = ln(-х)

Пользуясь изложенными методами, приведем последовательность преобразований при построении графика функции у = f(kx + b), если дан график функции у = f(x):

  • нарисовать график функции у = f(x);
  • получить график функции у = f(x + b), сдвинув исходный на вектор b = (-b; 0), как описано в п. 5.1;
  • получить график функции у = f(kx + b), “сжав” предыдущий в к раз к оси Оу, как описано выше.

Пример:

Написать последовательность преобразований и построить график функции у = Преобразования графиков функций.

Решение:

  • нарисуем график функции у = √х;
  • о получим график функции у = Преобразования графиков функций, сдвинув исходный на 4 единицы влево вдоль оси Ох;
  • о получим график функции у = Преобразования графиков функций, сжав предыдущий в 5 раз к оси Oy и затем отобразив симметрично относительно оси Оу.

Построение графика показано на рис. 55

Замечание:

Теперь понятно, что если функция у = f(x) периодическая с периодом Т, то функция у = К ∙ f(kx + b) + а тоже периодическая с периодом T₁ = Преобразования графиков функций. (п. 3.5 лекции 3). Действительно, график последней функции получается из исходного сдвигом вдоль оси Ох, что не меняет период, последующим “сжатием“ вдоль оси Ох, что “уменьшает» период в |k| раз (период T делится на |k|), и окончательным умножением всех ординат на К с последующим прибавлением а, что также не изменяет получившийся период T₁ =Преобразования графиков функций

Построение графиков с модулями

График функции у = ∣f(x)∣ получается из графика функции у = f(x) следующим образом (рис. 56)

  • все части графика функции у = f(x), лежащие ниже оси Ох, следует отобразить вверх симметрично относительно этой оси;
  • оставшиеся внизу части исходного графика следует стереть.

Действительно, по определению модуля действительного числа имеем:
(5.1) Преобразования графиков функций

Таким образом, те участки исходного графика, которые лежат не ниже оси Ox (f(x) ≥ 0), менять не нужно, а для тех участков, которые лежат ниже оси Ох, нужно построить функцию у = —f(x). В соответствии с п. 5.2 это получается симметричным отображением исходного графика относительно оси Ох. Заметим, что полученный график лежит не ниже оси Ох, что естественно, т.к. |f(x)| ≥ 0 для ∀x ∈ D(f).

Преобразования графиков функций
Рис. 55. Построение графика функции у = Преобразования графиков функций
Преобразования графиков функций
Рис. 56. Построение графика функции у = |f(x)|

Пример:

Построение графика функции у = |х² — 1| показано на рис. 57.

График функции у = f (|x|) получается из графика функции у = f(х) следующим образом (рис. 58):

  • все части графика функции у = f(x), лежащие слева от оси Оу, следует стереть;
  • о оставшуюся часть графика следует отобразить налево симметрично относительно оси Оу.

Действительно, по определению модуля действительного числа имеем:
(5.2) Преобразования графиков функций

Преобразования графиков функций
Рис. 57. Построение графика функции у = |x² — 1|

Таким образом, не нужно изменять те участки исходного графика, для которых х ≥ 0, а для х<0 (слева от оси Оу) следует построить график функции у = f(—х). В соответствии с п. 5.2 это получается симметричным отображением исходного графика относительно оси Оу. Заметим, что полученный график симметричен относительно оси Оу, что естественно, т.к. функция у = f(|x|) четная (докажите самостоятельно).

Преобразования графиков функций
Рис. 58. Построение графика функции у = f(|x|)

Пример:

Построение графика функции у = (|x| — 2)² показано на рис. 59

Элементарными методами можно строить эскизы графиков более сложных функций.

Пример:

Построить эскиз графика у = Преобразования графиков функций

Решение:

Построение графика показано на рис. 60. Заметим, что график отсутствует там, где sin х < О, так как D(x) = {x| sin х ≥ 0}

Преобразования графиков функций
Рис. 59. Построение графика функции у = (∣x∣ — 2)²

Кроме того, так как √u > и при 0 < u < 1, то график у = Преобразования графиков функций (сплошная линия) будет лежать не ниже графика у = sin x (пунктирная линия), если их нарисовать в одних осях.

Преобразования графиков функций
Рис. 60. Построение графика функции у = √sinx

Построение графиков функций с примерами

Пример:

C помощью элементарных преобразований постройте график функции: у = x² — х — 2.

Решение:

Выделим полный квадрат из правой части уравнения функции: у = x² — х — 2 ⇔ y = x²-x+Преобразования графиков функций ⇔ у = Преобразования графиков функций. График этой функции получается следующей последовательностью элементарных преобразований (рис. 61):
1) y =x²
2) у =Преобразования графиков функций. Сдвиг вправо вдоль Ox на Преобразования графиков функций.
3) у = Преобразования графиков функций. Сдвиг вниз вдоль Oy на Преобразования графиков функций.

Преобразования графиков функций
Рис. 61. Построение графика функции у = x² — х — 2

Пример:

Используя сложение, деление функций, постройте график функции: у = х + Преобразования графиков функций.

Решение:

В одних осях координат нарисуем графики следующих функций (рис. 62):
1) у = х,
2) y=Преобразования графиков функций,
3) y = x + Преобразования графиков функций.

Преобразования графиков функций
Рис. 62. Построение графика функции у = х + Преобразования графиков функций

Пример:

Постройте график сложной функции у = sin² х.

Решение:

В одних осях координат нарисуем графики функций:

1) y = sin x,
2) y = sin² х.

Учитывая, что квадрат числа меньшего единицы, меньше исходного числа, получим график (рис. 63)

Преобразования графиков функций
Рис. 63. Построение графика функции у = sin² х

Пример:

Постройте график функции в полярной системе координат: r = Преобразования графиков функций(прямая линия).

Решение:

Вычислим значения г для некоторых значений Преобразования графиков функций ∈ (0; π) — см. таблицу.

Преобразования графиков функций0Преобразования графиков функцийПреобразования графиков функцийПреобразования графиков функцийПреобразования графиков функций
r2Преобразования графиков функцийПреобразования графиков функций
Преобразования графиков функций
Рис. 64. График функции r = Преобразования графиков функций

Соединив плавной линией найденные точки, получим линию вдоль оси Ох, проходящую через точку (0;1). Докажем что эта линия — прямая (рис. 64). Действительно: из Δ ОAВ ⇒ cosПреобразования графиков функций = Преобразования графиков функций = Преобразования графиков функций ⇒ r = Преобразования графиков функций.

Пример:

Постройте линию, описываемую уравнением, у = Преобразования графиков функций

Решение:

Сначала построим график функции у =Преобразования графиков функций (рис. 65). Затем, пользуясь определением |x| (2.1), строим график (рис. 66) функции у = Преобразования графиков функций
Преобразования графиков функций
Наконец, строим линию описываемую уравнением у = Преобразования графиков функций (рис. 67):

Преобразования графиков функций
Рис. 65. График функции у = Преобразования графиков функций
Преобразования графиков функций
Рис. 66. График функции у = Преобразования графиков функций
Преобразования графиков функций
Рис. 67. График функции у =Преобразования графиков функций
Преобразования графиков функций

Пример:

Постройте линию, описываемую уравнением у = Преобразования графиков функций

Решение:

Для построения графика данного примера сначала постройте график функции у =Преобразования графиков функций. Затем, в соответствии с определением |х|, сотрите ту часть графика, которая расположена слева от оси Оу, а оставшуюся справа часть, отразите симметрично оси Оу.

Ответ: рис. 68.

Преобразования графиков функций
Рис. 68. График функции у =Преобразования графиков функций

Пример:

Постройте линию, описываемую уравнением у = |х² — х -2|.

Решение:

Для построения графика данного примера сначала постройте график функции у = х² — х — 2. Затем отразите симметрично оси Ox ту часть графика, которая осталась снизу от оси Ох. Затем сотрите ту часть графика, которая расположена в нижней полуплоскости.

Ответ: рис. 69.

Преобразования графиков функций
Рис. 69. График функции у = |х² — х — 2|

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

  1. Тождественные преобразования алгебраических выражений
  2. Функции и графики
  3. Квадратная функция и её графики
  4. Алгебраические неравенства
  5. Неравенства
  6. Неравенства с переменными
  7. Прогрессии в математике
  8. Арифметическая прогрессия
  9. Геометрическая прогрессия
  10. Показатели в математике
  11. Логарифмы в математике
  12. Исследование уравнений
  13. Уравнения высших степеней
  14. Уравнения высших степеней с одним неизвестным
  15. Комплексные числа
  16. Непрерывная дробь (цепная дробь)
  17. Алгебраические уравнения
  18. Неопределенные уравнения
  19. Соединения
  20. Бином Ньютона
  21. Число е
  22. Непрерывные дроби
  23. Функция
  24. Исследование функций
  25. Предел
  26. Интеграл
  27. Двойной интеграл
  28. Тройной интеграл
  29. Интегрирование
  30. Неопределённый интеграл
  31. Определенный интеграл
  32. Криволинейные интегралы
  33. Поверхностные интегралы
  34. Несобственные интегралы
  35. Кратные интегралы
  36. Интегралы, зависящие от параметра
  37. Квадратный трехчлен
  38. Производная
  39. Применение производной к исследованию функций
  40. Приложения производной
  41. Дифференциал функции
  42. Дифференцирование в математике
  43. Формулы и правила дифференцирования
  44. Дифференциальное исчисление
  45. Дифференциальные уравнения
  46. Дифференциальные уравнения первого порядка
  47. Дифференциальные уравнения высших порядков
  48. Дифференциальные уравнения в частных производных
  49. Тригонометрические функции
  50. Тригонометрические уравнения и неравенства
  51. Показательная функция
  52. Показательные уравнения
  53. Обобщенная степень
  54. Взаимно обратные функции
  55. Логарифмическая функция
  56. Уравнения и неравенства
  57. Положительные и отрицательные числа
  58. Алгебраические выражения
  59. Иррациональные алгебраические выражения
  60. Преобразование алгебраических выражений
  61. Преобразование дробных алгебраических выражений
  62. Разложение многочленов на множители
  63. Многочлены от одного переменного
  64. Алгебраические дроби
  65. Пропорции
  66. Уравнения
  67. Системы уравнений
  68. Системы уравнений высших степеней
  69. Системы алгебраических уравнений
  70. Системы линейных уравнений
  71. Системы дифференциальных уравнений
  72. Арифметический квадратный корень
  73. Квадратные и кубические корни
  74. Извлечение квадратного корня
  75. Рациональные числа
  76. Иррациональные числа
  77. Арифметический корень
  78. Квадратные уравнения
  79. Иррациональные уравнения
  80. Последовательность
  81. Ряды сходящиеся и расходящиеся
  82. Тригонометрические функции произвольного угла
  83. Тригонометрические формулы
  84. Обратные тригонометрические функции
  85. Теорема Безу
  86. Математическая индукция
  87. Показатель степени
  88. Показательные функции и логарифмы
  89. Множество
  90. Множество действительных чисел
  91. Числовые множества
  92. Преобразование рациональных выражений
  93. Преобразование иррациональных выражений
  94. Геометрия
  95. Действительные числа
  96. Степени и корни
  97. Степень с рациональным показателем
  98. Тригонометрические функции угла
  99. Тригонометрические функции числового аргумента
  100. Тригонометрические выражения и их преобразования
  101. Преобразование тригонометрических выражений
  102. Комбинаторика
  103. Вычислительная математика
  104. Прямая линия на плоскости и ее уравнения
  105. Прямая и плоскость
  106. Линии и уравнения
  107. Прямая линия
  108. Уравнения прямой и плоскости в пространстве
  109. Кривые второго порядка
  110. Кривые и поверхности второго порядка
  111. Числовые ряды
  112. Степенные ряды
  113. Ряды Фурье
  114. Преобразование Фурье
  115. Функциональные ряды
  116. Функции многих переменных
  117. Метод координат
  118. Гармонический анализ
  119. Вещественные числа
  120. Предел последовательности
  121. Аналитическая геометрия
  122. Аналитическая геометрия на плоскости
  123. Аналитическая геометрия в пространстве
  124. Функции одной переменной
  125. Высшая алгебра
  126. Векторная алгебра
  127. Векторный анализ
  128. Векторы
  129. Скалярное произведение векторов
  130. Векторное произведение векторов
  131. Смешанное произведение векторов
  132. Операции над векторами
  133. Непрерывность функций
  134. Предел и непрерывность функций нескольких переменных
  135. Предел и непрерывность функции одной переменной
  136. Производные и дифференциалы функции одной переменной
  137. Частные производные и дифференцируемость функций нескольких переменных
  138. Дифференциальное исчисление функции одной переменной
  139. Матрицы
  140. Линейные и евклидовы пространства
  141. Линейные отображения
  142. Дифференциальные теоремы о среднем
  143. Теория устойчивости дифференциальных уравнений
  144. Функции комплексного переменного
  145. Преобразование Лапласа
  146. Теории поля
  147. Операционное исчисление
  148. Системы координат
  149. Рациональная функция
  150. Интегральное исчисление
  151. Интегральное исчисление функций одной переменной
  152. Дифференциальное исчисление функций нескольких переменных
  153. Отношение в математике
  154. Математическая логика
  155. Графы в математике
  156. Линейные пространства
  157. Первообразная и неопределенный интеграл
  158. Линейная функция
  159. Выпуклые множества точек
  160. Система координат