Для связи в whatsapp +905441085890

Исследование функций с примерами решения и образцами выполнения

Исследование функции — задача, заключающаяся в определении основных параметров заданной функции. Одной из целей исследования является построение графика функции.

Точки экстремума

Максимумом или минимумом функции y = f(x) называется
такое ее значение Исследование функции для которого имеют место
неравенства при любых малых положительных и отрицательных значениях Исследование функции

Исследование функции — для случая максимума;

Исследование функции — для случая минимума.

Таким образом, в точках максимума (минимума) значение Исследование функциибольше (соответственно меньше) всех соседних значений функции (рис. 7.1).

Исследование функции

Функция, представленная на рис. 7.1, в точке Исследование функции имеет
максимум, а в точке Исследование функцииминимум.

Точки, в которых функция принимает максимальное или минимальное значения, называются точками экстремума.

Необходимое условие максимума и минимума функции

Теорема Ферма:

Если функция определена и дифференцируема
в некотором промежутке X и во внутренней точке этого промежуткаИсследование функции имеет наибольшее (наименьшее) значение, то
производная функции в этой точке равна нулю, т.е. Исследование функции

Доказательство:

Пусть функция y = f(x) в точке Исследование функции
промежутка X имеет наибольшее значение (рис. 7.2).

Исследование функции

Тогда Исследование функции если Исследование функции принадлежит Х. Отсюда Исследование функции при достаточно малых Исследование функции независимо от его знака.

Если Исследование функциито Исследование функции и Исследование функции а если Исследование функции то Исследование функции и Исследование функции

Переходя к пределам справа при Исследование функции и слева при Исследование функции
получим

Исследование функции

Так как по условию функция y=f(x) дифференцируема в
точке Исследование функции то ее предел при Исследование функции не зависит от способа
стремления (слева или справа).

Поэтому

Исследование функции

т.е. Исследование функцииАналогично доказывается случай для наименьшего значения функции.

Необходимым условием максимума (минимума) непрерывной функции является равенство нулю первой производной.

Это условие является следствием теоремы Ферма. Действительно, если в точке Исследование функции дифференцируемая функция имеет экстремум, то в некоторой окрестности этой точки выполняются условия теоремы Ферма и, следовательно, производная функции в этой точке равна нулю, т.е. Исследование функции

Необходимое условие максимума или минимума непрерывной функции имеет простой геометрический смысл. Так как в экстремальных точках касательная параллельна оси Ох (см. рис. 7.1 и 7.2), т.е. угол наклона касательной к оси Ох равен нулю, то тангенс данного угла, который равен производной, также равен нулю.

Максимум или минимум может иметь место также в тех точках, где производная не существует вовсе (рис. 7.3).

Исследование функции

Приведенное условие существования экстремумов является необходимым, но не достаточным. На рис. 7.4 приведен случай, когда необходимое условие выполняется в точке Исследование функции но ни максимума, ни минимума нет.

Исследование функции

Достаточные условия существования экстремума

Первое условие. Если при переходе через точку Исследование функции производная дифференцируемой функции y = f(x) меняет свой знак с плюса на минус, то точка Исследование функции является точкой максимума, а если с минуса на плюс, то точкой минимума.

Действительно, если Исследование функции при Исследование функции и Исследование функции при Исследование функциито в промежутке Исследование функции функция f(x) возрастает, а в
промежутке Исследование функции убывает, так что значение Исследование функции будет
наибольшим в промежутке Исследование функциит.е. в точке Исследование функциифункция имеет максимум. Аналогично доказывается случай для минимума функции. Графически сказанное поясняется на рис. 7.5.

Исследование функции

Если при переходе через точку Исследование функции производная не меняет
своего знака, то в точке Исследование функции нет ни максимума, ни минимума
(см. рис. 7.4).

Второе условие. Если функция y = f(x) дважды дифференцируема в точке Исследование функции, и ее первая производная в данной точке равна
нулю, а вторая производная в этой точке положительна, то точка
Исследование функции является точкой минимума. Если вторая производная
функции y = f(x) отрицательна в точке Исследование функции, то она является точкой максимума.

Действительно, вторая производная вычисляется по формуле:

Исследование функции

так как Исследование функции по условию.

Пусть Исследование функции Тогда дробь Исследование функции положительна для всех х
из окрестности точки Исследование функции. Для Исследование функции знаменатель этой дроби Исследование функции поэтому Исследование функции а для Исследование функции знаменатель дроби
Исследование функции Таким образом, производная при переходе
точки Исследование функции меняет знак с минуса на плюс. Согласно первому условию
в такой точке имеет место минимум. Аналогично можно показать,
что при Исследование функциив точке Исследование функции имеет место максимум. Сказанное
поясняется на рис. 7.5.

Если вторая производная в некоторой точке равна нулю, то эта
точка также может быть экстремальной. Например, для функции
Исследование функции в точке х = 0 имеет место минимум, хотя вторая производная в этой точке равна нулю. Действительно, Исследование функции и Исследование функции

Алгоритм исследования функции на экстремум

1.Найти производную функции и приравнять ее нулю.

2.Решив это уравнение, определить подозрительные точки.

3.Исследовать знак производной слева и справа от каждой
подозрительной точки и принять решение о наличии
минимума или максимума.

4.Найти значения функции в экстремальных точках.

Пример:

Найти максимумы и минимумы функции

Исследование функции

Решение:

Область определения функции — вся числовая ось.
Определяем производную:

Исследование функции

Подозрительные точки находим, решая уравнение Исследование функции

Отсюда Исследование функции или Исследование функции

Определяем вторую производную: Исследование функции

Для точки Исследование функции имеем у» = 18*0 —12*0 —12 = -12, т.е. в этой точке
имеет место максимум. Его значение равно

у = 1,5*0-2*0-6*0 + 1 = 1.

Для точки Исследование функции имеем Исследование функции т.е. в этой точке
имеет место минимум. Его значение равно

Исследование функции

Для точки Исследование функции имеем Исследование функции т.е. в этой
точке имеет место минимум. Его значение равно Исследование функцииИсследование функции

Пример:

Производитель реализует свою продукцию по цене
60 ден. ед. за единицу продукции. Издержки производителя
определяются кубической зависимостью Исследование функции где х —
количество изготовленной и реализованной продукции. Найти оптимальный объем выпуска и соответствующий ему доход.

Решение:

Доход определяется разностью между выручкой за
проданную продукцию 60х и ее себестоимостью, т.е.

Исследование функции

Для определения оптимального объема выпуска найдем производную
этой функции, приравняем ее нулю и решим полученное уравнение

Исследование функции

Отрицательный корень не имеет экономического смысла, поэтому
для дальнейших исследований принимаем Исследование функции Вторая
производная в исследуемой точке r»(х) = -0,006х = -0,006 • 100 = -0,6 является отрицательной, т.е. в этой точке имеет место максимум функции. Таким образом, оптимальный объем выпуска равен 100 единицам продукции.

Доход, соответствующий оптимальному выпуску,

Исследование функции

Для определения наибольшего и наименьшего значений на
отрезке, помимо указанного алгоритма, находят значения функции на концах отрезка. Затем выбирают наибольшее и наименьшее
значения из этих двух и всех экстремальных значений. Смысл
сказанного поясняется на рис. 7.6.

Исследование функции

Монотонность и выпуклость функций

Функция y = f(x) не убывает (не возрастает) на промежутке X, если для любых Исследование функции из этого промежутка при условии Исследование функции следует неравенство

Исследование функции

Если меньшему значению неравенства аргумента соответствует меньшее значение функции, то функция называется возрастающей (рис. 7.7). Если меньшему значению аргумента соответствует большее значение функции, то функция называется убывающей (рис.7.8).

Исследование функции

Функции возрастающие и убывающие называются монотонными.

Функция называется ограниченной на промежутке X, если существует такое положительное число М > 0, что Исследование функции для любого х из промежутка X. Например, функция у = cos х ограничена на всей числовой оси, так как Исследование функции для любого х числовой оси.

Функция y = f(x) на интервале (а,b) имеет выпуклость вниз (вверх), если в пределах данного интервала график лежит не ниже (не выше) любой касательной к графику функции. На рис. 7.9 изображен график функции, имеющей выпуклость вниз, а на рис. 7.10 — график функции, имеющей выпуклость вверх.

Исследование функции

Функция y = f(x) на интервале (а, b) называется выпуклой вниз, если для любых двух значений Исследование функции из данного интервала выполняется неравенство (рис. 7.9)

Исследование функции

Функция y = f(x) на интервале (а, b) называется выпуклой вверх, если для любых двух значений Исследование функции из данного интервала выполняется неравенство (рис. 7.10)

Исследование функции

При исследовании функций бывают полезны две следующие
теоремы.

Теорема:

Функция выпукла вниз (вверх) тогда и только тогда,
когда ее первая производная на этом промежутке монотонно
возрастает (убывает).

Теорема:

Если вторая производная дважды дифференцируемой
функции положительна (отрицательна) внутри интервала (a, b), то
функция выпукла вниз (вверх) внутри этого интервала (достаточное
условие
).

Однако, данное условие справедливо не всегда. Например,
функция Исследование функции выпукла вниз на всей числовой оси, хотя вторая
производная Исследование функции не всюду положительна (при х = 0 у» = 0).

Точка Исследование функции называется точкой перегиба графика функции
y = f(x), если в этой точке график имеет касательную и существует
такая окрестность точки Исследование функции, в пределах которой график функции слева и справа от точки Исследование функции имеет разные направления выпуклости.

На рис. 7.4 точка Исследование функции является точкой перегиба.

Необходимое условие перегиба. Вторая производная дважды
дифференцируемой функции в точке перегиба Исследование функции равна нулю:

Исследование функции

Достаточное условие перегиба. Вторая производная дважды
дифференцируемой функции при переходе точки перегиба Исследование функции
меняет свой знак.

Алгоритм исследования функции на выпуклость и точки перегиба

1.Найти вторую производную функции и приравнять ее нулю.

2.Решив это уравнение, определить подозрительные точки.

3.Исследовать знак второй производной слева и справа от
каждой подозрительной точки и принять решение об интервалах
выпуклости и наличии точек перегиба.

4.Найти значения функции в точках перегиба.

Пример:

Найти экстремальные точки, интервалы выпуклости
и точки перегиба функции Исследование функции

Решение:

Находим первую и вторую производные исследуемой
функции:

Исследование функции

Приравняем нулю первую производную и решим полученное
уравнение:

Исследование функции

Подставив полученные значения в формулу для второй
производной, найдем

Исследование функции

Таким образом, точка Исследование функции является точкой минимума.
Значение исследуемой функции в этой точке

Исследование функции

Точку Исследование функции необходимо исследовать дополнительно. Первая
производная определена на всей числовой оси, так как точек, в которых производная отсутствует, не существует. Исследуем знак производной на интервале Исследование функции Для этого рассчитаем значения производной в точках х = 1 и х = 3:

Исследование функции

Так как слева и справа от точки Исследование функции знак производной
положительный, то в этой точке экстремума нет.

Приравняем нулю вторую производную и решим полученное
уравнение:

Исследование функции

Вторая производная также определена на всей числовой оси. В
точке х = 0 значение второй производной

Исследование функции

в точке Исследование функции

Исследование функции

в точке х = 3 —

Исследование функции

Поэтому:

■ на интервале Исследование функции — функция выпукла вниз;

■ на интервале (1; 2) у» < 0 — функция выпукла вверх;

■ на интервале Исследование функции — функция выпукла вниз.

Таким образом, точки Исследование функции являются точками перегиба.
Значение исследуемой функции в этих точках:

Исследование функции

Асимптоты функций

Прямая называется асимптотой функции y = f(x), если расстояние от
точки (х, f(x)) , лежащей на графике функции, до этой прямой
стремится к нулю при движении точки по графику в бесконечность.

Существуют три вида асимптот: вертикальные (рис. 7.11),
горизонтальные (рис. 7.12) и наклонные (рис. 7.13, 7.14).

Исследование функции

На рис. 7.14 кривая приближается к асимптоте, все время пересекая ее.

Прямая х = а называется вертикальной асимптотой графика
функции у = f(x), если хотя бы одно из предельных значений Исследование функцииили Исследование функции равно Исследование функции или Исследование функции

Прямая у = b называется горизонтальной асимптотой графика
функции y = f (х), если Исследование функции или Исследование функции

Прямая y = kx + b Исследование функции называется наклонной асимптотой
графика функции у = f(x), если существуют конечные пределы Исследование функции

Действительно, если у = kх + b — наклонная асимптота, то Исследование функции

Из последнего выражения следует

Исследование функции

При известном k из равенства Исследование функции находим Исследование функции

Если для горизонтальной и наклонной асимптот конечен только
предел при Исследование функции или при Исследование функции то эти асимптоты называются соответственно правосторонней или левосторонней.

Пример:

Найти асимптоты графика функции Исследование функции

Решение:

Областью определения является вся числовая ось,
кроме точки х = 3 . Причем

Исследование функции

Поэтому прямая х = 3 — вертикальная асимптота. Так как Исследование функции то график функции наклонных асимптот не имеет. ►

Пример:

Найти асимптоты графика функции у = х + arctg х.
Решение. Функция непрерывна на всей числовой оси, поэтому
вертикальные асимптоты отсутствуют. Так как

Исследование функции

то отсутствуют и горизонтальные асимптоты.

Для правосторонней наклонной асимптоты Исследование функцииИсследование функции

Уравнение правосторонней асимптоты имеет вид Исследование функции

Для левосторонней наклонной асимптоты Исследование функцииИсследование функции

Уравнение правосторонней асимптоты имеет вид Исследование функции

Правило Лопиталя

При отыскании предела часто сталкиваются с
неопределенностями Исследование функции или Исследование функции Для решения задачи применяют правило Лопиталя.

Прежде чем переходить к доказательству правила Лопиталя,
рассмотрим две теоремы.

Теорема Ролля:

Пусть функция y = f(x) удовлетворяет
следующим условиям:

■ непрерывна на промежутке [а,b];
■ дифференцируема на промежутке (а,b);
■ на концах промежутка принимает равные значения, т.е.
f(a) = f(b).

Тогда внутри промежутка существует по крайней мере одна точка
Исследование функции производная функции в которой равна нулю, т.е. Исследование функции

Доказательство. Действительно, если внутри промежутка функция имеет хотя бы одну точку, в которой она принимает наибольшее или наименьшее значение, то в соответствии с теоремой Ферма производная в этой точке равна нулю. Если же таких точек нет, то функция тождественно постоянна на всем интервале. Тогда производная равна нулю во всех точках указанного интервала.

Теорема Лагранжа:

Пусть функция y = f(x) удовлетворяет
следующим условиям:

■ непрерывна на промежутке [а, b];
■ дифференцируема на промежутке (а, b).

Тогда внутри промежутка существует по крайней мере одна точка
Исследование функции в которой производная функции равна частному от деления
приращения функции на приращение аргумента на данном промежутке:

Исследование функции

Доказательство:

Введем функцию

Исследование функции

Эта функция удовлетворяет условиям теоремы Ролля, поскольку она:

■ непрерывна на промежутке [а, b];

■ дифференцируема на промежутке (а, b) и

Исследование функции

■ на концах промежутка принимает равные значения:

Исследование функции

Следовательно, внутри промежутка существует по крайней мере одна точка Исследование функции производная функции g(x) в которой равна нулю:

Исследование функции

Отсюда находим Исследование функции

Правило Лопиталя

Пусть Исследование функции Причем функции Исследование функции и Исследование функции удовлетворяют следующим условиям:

■ непрерывны на промежутке [х, а];

■ дифференцируемы на промежутке (х, а) и Исследование функции

Исследование функции (неопределенность Исследование функции

Исследование функции (неопределенность Исследование функции

Тогда Исследование функции

Доказательство:

Доказательство проведем для неопределенности Исследование функции Применяя теорему Лагранжа для функций Исследование функции и Исследование функцииполучим Исследование функции

Так как при Исследование функции имеем Исследование функции то, используя теорему о пределе частного двух функций, получим

Исследование функции

В случае, если Исследование функции снова представляет собой неопределенность вида Исследование функции или Исследование функции то применяют это правило вторично, и т.д.

Пример:

Используя правило Лопиталя, найти пределы:

Исследование функции

Решение:

Во всех примерах имеем неопределенность Исследование функции. Используя правило Лопиталя, получим

Исследование функции

Пример:

Используя правило Лопиталя, найти предел Исследование функции

Решение:

Имеем неопределенность Исследование функции Применяя правило Лопиталя n раз, получим:

Исследование функции

Пример:

Используя правило Лопиталя, найти предел Исследование функции

Решение:

Имеем неопределенность Исследование функции Разделив числитель и
знаменатель на х , получим Исследование функции Неопределенность этого предела Исследование функции Используя правило Лопиталя, найдем:

Исследование функции

Построение графиков функций

Изучение функции и построение ее графика целесообразно
проводить по следующей схеме:

1.Найти область существования функции, точки разрыва и
определить их характер.

2.Определить поведение функции в бесконечности, вычислив
пределы

Исследование функции

3.Найти асимптоты.

4.Найти пересечение кривой с осью Ох, решая уравнение
f(x) = 0, и с осью Оу , вычисляя у = f(0).

5.Найти экстремумы и интервалы монотонности функции.

6.Найти интервалы выпуклости функции и точки перегиба.

7.По полученным данным постепенно делают набросок
кривой, уточняя его по отдельным точкам.

Пример:

Построить график функции

Исследование функции

Решение:

1. Эта функция определена и непрерывна для всех Исследование функцииПри приближении к точке Исследование функции слева Исследование функции
а справа — Исследование функции Таким образом, прямая х = -1 является вертикальной асимптотой.

2.Пределы функции в бесконечности:

Исследование функции

3.Определим параметры наклонных асимптот. Угловой
коэффициент справа

Исследование функции

Угловой коэффициент слева

Исследование функции

Точка пересечения асимптоты с осью Оу справа

Исследование функции

Точка пересечения асимптоты с осью Оу слева

Исследование функции

Таким образом, параметры правой и левой асимптот совпали,
т.е. имеет место одна асимптота, определенная уравнением прямой
у = х-4.

4.Точка пересечения кривой с осью Оу находится из
соотношения

Исследование функции

Точка пересечения кривой с осью Ох находится из уравнения

Исследование функции

Дробь равна нулю, если числитель равен нулю, т.е.

Исследование функции

Решение данного квадратного уравнения имеет вид

Исследование функции

5.Для определения экстремумов и интервалов монотонности
функции найдем первую и вторую производные:

Исследование функции

Приравняв нулю первую производную, получим:

Исследование функции

Решив данное уравнение, найдем подозрительные точки:

Исследование функции

Значения функции в этих точках:

Исследование функции

Подставив полученные координаты экстремальных точек в формулу
второй производной, найдем: Исследование функции

т.е. в точке (0,4; -2,2) имеет место минимум,

Исследование функции

т.е. в точке (-2,4; -7,8) имеет место максимум.

Для исследования функции на монотонность проследим поведение производных внутри полученных интервалов (рис. 7.15). Знаками плюс и минус показан знак производной на данном интервале.

Исследование функции

В точке Исследование функции имеет место максимум, поэтому на промежутке Исследование функции функция возрастает, а на промежутке (-2,4; -1) убывает и при Исследование функции слева стремится к Исследование функции В точке Исследование функции имеет
место минимум, поэтому на промежутке (-1; 0,4) функция
убывает, а на промежутке Исследование функции — возрастает.

6.Для нахождения точек перегиба приравняем нулю вторую производную: Исследование функции Это уравнение не имеет корней, т.е. точек перегиба нет.

По полученным данным строим график функции (рис. 7.16). ►

Исследование функции

Производные и дифференциалы функций нескольких переменных

Пусть задана функция n переменных Исследование функции

Первой частной производной функции Исследование функции по переменной Исследование функции называется производная данной функции по Исследование функции при фиксированных остальных переменных:

Исследование функции

Аналогично определяется первая частная производная по любой другой переменной. Например, первую частную производную по Исследование функции записывают в виде

Исследование функции

Второй частной производной функции Исследование функции называется первая частная производная от первой частной производной данной функции.

Функция n переменных имеет Исследование функции вторых частных производных. Действительно, количество частных производных от частной производной по переменной Исследование функции равно n (см. первую строку табл. 7.1). Количество строк в табл. 7.1 также равно n.

Таблица 7.1

Исследование функции

Для функции двух переменных имеем четыре вторые частные производные:

Исследование функции

Вторая частная производная по двум различным переменным, например Исследование функции называется смешанной. Величина смешанной производной, непрерывной при данных значениях переменных Исследование функции и Исследование функции, не зависит от порядка переменных, по которым берутся производные, т.е.

Исследование функции

Аналогично определяются производные более высоких порядков, например третья частная производная, четвертая частная производная и т.д.

Частный дифференциал функции n переменных Исследование функции по одной из переменных, например по Исследование функции, определяется равенством

Исследование функции

Полный дифференциал функции n переменных Исследование функции определяется по формуле

Исследование функции

Полный дифференциал второго порядка функции двух переменных Исследование функции задается соотношением

Исследование функции

Пример:

Найти частные производные первого и второго порядка от функции Исследование функции

Решение:

Находим первую и вторую частные производные по х:

Исследование функции

Находим первую и вторую частные производные по у :

Исследование функции

Находим смешанные вторые частные производные:

Исследование функции

Как и следовало ожидать, смешанные частные производные равны. ►

Пример:

Найти дифференциалы первого и второго порядков от функции Исследование функции

Решение. Частные производные первого и второго порядков исследуемой функции равны:

Исследование функции

Дифференциал первого порядка

Исследование функции

Дифференциал второго порядка

Исследование функции

Градиент

Градиентом функции n переменных Исследование функции называется вектор с координатами

Исследование функции

При этом пишут grad y, Исследование функции

Известно, что вектор Исследование функции в n-мерной системе координат можно представить в виде

Исследование функции

где Исследование функции — проекции вектора Исследование функции на оси координат;

Исследование функции — орты или векторы единичной длины, совпадающие по направлению с координатными осями Исследование функции соответственно.

Градиент функции трех переменных u = f(x, у, z) можно представить в виде

Исследование функции

где Исследование функции — орты координатных осей х, у, z соответственно.

Градиент функции в заданной точке показывает направление самого быстрого роста функции в этой точке.

В экономике достаточно часто используются функции двух переменных. Градиент функции двух переменных u = f(х, у) можно представить в виде

Исследование функции

Существует четкая связь между линиями уровня таких функций и направлением градиента.

Теорема:

Пусть задана дифференцируемая функция u = f(x,у) и величина градиента данной функции, отличная от нуля, в точке Исследование функции. Тогда градиент в точке Исследование функции перпендикулярен линии уровня, проходящей через эту точку.

Доказательство. Линия уровня, представленная на рис. 7.17, задана уравнением L = f(x, у).

Исследование функции

В точке Исследование функции линии уровня проведем касательную и построим вектор Исследование функции, совпадающий по направлению с касательной, с началом в этой точке.

Пусть проекция вектора Исследование функции на ось Ох будет равна единице. Отношение проекций Исследование функции или Исследование функции

Таким образом, вектор Исследование функции можно представить в виде:

Исследование функции

Умножив данный вектор на dx , получим

Исследование функции

Найдем скалярное произведение градиента функции u = f(x,y)
в точке Исследование функции и вектора Исследование функции

Исследование функции

С другой стороны, полный дифференциал функции u = f(x, у)
в точке Исследование функции

Исследование функции

На линии уровня функция u = f(x, у) не изменяется по определению, поэтому полный дифференциал по направлению вектора Исследование функции равен нулю:

Исследование функции

Сопоставив это выражение с (7.1), можно сделать вывод о
перпендикулярности векторов Исследование функции и grad u.

Пример:

Для функции u = ху построить линию уровня, проходящую через точку Исследование функциии Исследование функции и найти градиент в данной
точке.

Решение:

Уровень в исследуемой точке равен с = 1 • 1 = 1. Линия уровня определяется формулой

1 = ху или Исследование функции

Таким образом, линией уровня является гипербола.

Для отыскания градиента найдем частные производные функции в
исследуемой точке:

Исследование функции

Отсюда следует выражение для градиента функции в исследуемой
точке:

Исследование функции

Из полученной формулы видно, что градиент в исследуемой точке
направлен вправо вверх под углом 45° к осям Ох и Оу (рис. 7.18).

Исследование функции

Его модуль равен

Исследование функции

Однородные функции

Пусть задана функция и переменных Исследование функции определенная при Исследование функции где i = 1, 2,…, n, и имеющая в области определения непрерывные первые частные производные.

Функция Исследование функции называется однородной функцией степени р, если для любого числа t > 0 выполняется равенство

Исследование функции

Заметим, что условие определения функции Исследование функции при Исследование функции где i = 1, 2,…, n, широко используется в экономическом анализе.

Для однородных функций п переменных Исследование функции степени р справедлива формула

Исследование функции

Для однородной функции двух переменных u=f(x, у) степени р имеем

Исследование функции

Приведенные формулы называются формулами Эйлера.

Пример:

Определить степень однородных функций:

а) u = ах + by;

б) Исследование функции

Решение:

a) a(tx) + b(ty) = t(ax + by) = tu , т.е. функция u = ax + by имеет первую степень однородности;

б) Исследование функции т.е. функция Исследование функции имеет вторую степень однородности. ►

Экстремумы функции двух переменных

Пусть задана функция двух переменных u = f(x, у).

Точка Исследование функции называется точкой локального максимума (минимума), если для всех точек (х, у) из области определения функции u = f(x, у), близких к точке Исследование функции — лежащих в двумернойИсследование функции окрестности точки Исследование функции, справедливо неравенство Исследование функции (соответственно для точки локального минимумаИсследование функции

Двумерной Исследование функцииокрестностью точки Исследование функции называется множество точек (х,у), принадлежащих открытому кругу сколь угодно малого радиуса Исследование функциис центром в точке Исследование функции. Если при фиксированном числе Исследование функции точка (х, у) принадлежит Исследование функцииокрестности точки Исследование функции, то говорят, что точка (х, у) близка к точке Исследование функции, в противном случае — далека от точки Исследование функции (рис. 7.19).

Исследование функции

Если Исследование функции — точка локального экстремума функции u = f(x,y). то около точки Исследование функциигде Исследование функции функция
u = f(х,у) имеет вид шапочки, повернутой выпуклостью вверх
(максимум) или вниз (минимум).

Точка Исследование функции называется точкой глобального (абсолютного)
максимума (глобального (абсолютного) минимума) функции
u = f(x,у), если для всех точек (х, у), для которых функция u = f(х, у) определена, справедливо неравенство Исследование функции (соответственно для точки глобального минимума Исследование функции

Пусть функция u = f(x, у) определена в окрестности точки
Исследование функции и имеет в ней первые частные производные. Необходимым
условием локального экстремума данной функции в точке Исследование функции
является равенство нулю первых частных производных:

Исследование функции

Эти точки являются подозрительными и среди них следует
искать точки локального экстремума. Подозрительные точки не
обязаны быть точками локального экстремума.

Достаточное условие локального экстремума функции u = f(x, у)
дважды дифференцируемой в точке Исследование функции состоит в следующем.
Пусть функция u = f(x, у) в точке Исследование функции имеет первые частные
производные, равные нулю:

Исследование функции

1.Если Исследование функции или Исследование функции и выполняется неравенство Исследование функции то точка Исследование функцииявляется точкой локального минимума.

2. Если Исследование функции или Исследование функции и выполняется неравенство Исследование функции то точка Исследование функцииявляется точкой локального максимума.

3.Если Исследование функции то точка Исследование функциине является экстремальной.

Пример:

Исследовать на экстремум следующие функции
нескольких переменных: 1) Исследование функции

Решение:

1.Находим первые частные производные и приравниваем их к нулю:

Исследование функции

Решив полученные уравнения, находим подозрительные точки:

Исследование функции

Находим в подозрительной точке вторые частные производные:

Исследование функции

Так как Исследование функции то точка (0, 1) является точкой локального минимума. Значение функции в этой точке Исследование функции

2.Находим первые частные производные и приравниваем их к нулю:

Исследование функции

Решив систему из двух уравнений, находим подозрительные точки:

Исследование функции

Находим в подозрительной точке вторые частные производные:

Исследование функции

Так как Исследование функции то точка (1, 0) является точкой локального минимума. Значение функции в этой точке Исследование функции

Условный экстремум

При определении безусловного экстремума функции п
независимых переменных Исследование функции (см. §7.11) на независимые переменные Исследование функции не накладывается никаких
дополнительных условий. В задачах на условный экстремум поведение независимых переменных ограничено определенными условиями. Рассмотрим эту задачу для n независимых переменных в следующей формулировке.

Найти локальный экстремум функции n независимых
переменных Исследование функции при условии, что независимые переменные удовлетворяют ограничению

Исследование функции

Задача на условный экстремум записывается следующим образом:

Исследование функции

при условиях

Исследование функции

где m<n.

В задаче на условный экстремум функцию Исследование функции называют целевой, а функции Исследование функции где Исследование функциифункциями связи. При решении задач на условный экстремум обычно используется метод Лагранжа.

Пусть функция n независимых переменных Исследование функции и функции, определяющие условия (7.2), непрерывны и имеют непрерывные частные первые производные в точке локального экстремума Исследование функции a Исследование функции где Исследование функции При выполнении этих условий строят функцию Лагранжа, которая имеет вид

Исследование функции

где Исследование функции — множители Лагранжа.

Затем функцию Лагранжа от n + m переменных исследуют на
абсолютный экстремум. Для этих целей определяют подозрительную точку путем решения n + m уравнений:

Исследование функции

Система имеет n + m решений: Исследование функции которые являются координатами абсолютного экстремума функции Лагранжа. Точка Исследование функции является укороченной (так как из нее удалены координаты Исследование функции подозрительной точкой локального условного экстремума функции Исследование функции при условиях (7.2). Укороченную точку анализируют и выясняют, является ли она точкой условного экстремума при наличии ограничений (7.2) или не является.

Условия (7.3) являются необходимыми для существования локального условного экстремума.

Для функции двух независимых переменных задача на условный экстремум формулируется следующим образом: найти локальный экстремум функции u = f(x, у) при условии, что независимые переменные удовлетворяют ограничению g(x, у) = 0 , т.е.

Исследование функции

при условии

g(x,y) = 0.

Функция Лагранжа для этого случая имеет вид

Исследование функции

Подозрительная точка определяется путем решения трех
уравнений:

Исследование функции

Пример:

Отыскать условный экстремум функции u = ху при
условии у = 1-х (g(x, у) = у + х-1 = 0).

Решение:

Функция Лагранжа имеет вид

Исследование функции

Подозрительная точка определяется путем решения трех уравнений:

Исследование функции

Вычитая из первого уравнения второе, находим Исследование функции Из
третьего уравнения определяем Исследование функции Подставив Исследование функции в
последнюю формулу, окончательно получим Исследование функции С учетом полученных значений из первого или второго уравнения находим Исследование функции Значение функции в точке экстремума Исследование функцииГеометрия условий данного примера в координатах хОу представлена на рис. 7.20.

Исследование функции

Линия уровня, проходящая через подозрительную точку,
описывается уравнением ху = 1/4. Все линии уровня, лежащие ниже линии уровня ху = 1/4 , имеют уровень меньше 1/4 , а лежащие выше линии уровня ху = 1/4 — больше 1/4 . Это следует из уравнения линий уровней Исследование функции где k — значение уровня. Ясно, что чем больше k, тем
правее проходит кривая.

Функция, определяющая условие g (х, у) = у + х -1 = 0 , является
прямой линией (см. рис. 7.20). Из-за симметрии задачи функции
ху = 1/4 и g(x, у) = у + х-1 = 0 касаются друг друга в подозрительной
точке (1/4,1/4). Из сказанного следует, что на прямой g(x, у) = у + х-1 = 0 значение функции u = ху меньше 1/4, т.е. в подозрительной точке имеет место максимум. ►

Геометрический смысл локального условного экстремума
функции u = f(x, у) в точке Исследование функции состоит в том, что градиенты
целевой функции grad Исследование функции и функции связи Исследование функции
выходящие из точки Исследование функции, обязательно расположены на одной
прямой. Отсюда следует, что линии уровней функций f(x, у)
и g(x, у), содержащие точку Исследование функции, касаются в этой точке.

Действительно, пусть функции f(х, у) и g(x, у) непрерывны и
имеют непрерывные частные производные первого порядка по переменным х и у , Исследование функции — точка условного локального
экстремума функции u = f(x, у) при наличии ограничения g(x, у) = 0, а

Исследование функции

Перепишем условия (7.4) в виде

Исследование функции

Так как grad Исследование функции то, умножив первое уравнение системы на орт Исследование функции а второе — на орт Исследование функциии сложив их, получим

Исследование функции

Отсюда следует, что

Исследование функции

Таким образом, если два вектора равны, то они лежат на одной
прямой и противоположно направлены.

Пример:

Для условий примера 7.15 определить градиенты
целевой функции Исследование функциии функции связи Исследование функции в точке экстремума и построить их на графике.

Решение. Первые частные производные целевой функции
u = ху и функции связи g(х, у) = у + х-1 = 0 имеют вид

Исследование функции

Градиенты целевой функции и функции связи в экстремальной
точке

Исследование функции

Так как Исследование функции то равенство (7.5) имеет место:

Исследование функции

Полученные градиенты представлены на рис. 7.21. ►

Исследование функции

Дополнение к исследованию функции

Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций
Исследование функций

Смотрите также:

Предмет высшая математика

Дифференциал Основные теоремы дифференциального исчисления
Производные и дифференциалы высших порядков Формула Тейлора

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

  1. Тождественные преобразования алгебраических выражений
  2. Функции и графики
  3. Преобразования графиков функций
  4. Квадратная функция и её графики
  5. Алгебраические неравенства
  6. Неравенства
  7. Неравенства с переменными
  8. Прогрессии в математике
  9. Арифметическая прогрессия
  10. Геометрическая прогрессия
  11. Показатели в математике
  12. Логарифмы в математике
  13. Исследование уравнений
  14. Уравнения высших степеней
  15. Уравнения высших степеней с одним неизвестным
  16. Комплексные числа
  17. Непрерывная дробь (цепная дробь)
  18. Алгебраические уравнения
  19. Неопределенные уравнения
  20. Соединения
  21. Бином Ньютона
  22. Число е
  23. Непрерывные дроби
  24. Функция
  25. Предел
  26. Интеграл
  27. Двойной интеграл
  28. Тройной интеграл
  29. Интегрирование
  30. Неопределённый интеграл
  31. Определенный интеграл
  32. Криволинейные интегралы
  33. Поверхностные интегралы
  34. Несобственные интегралы
  35. Кратные интегралы
  36. Интегралы, зависящие от параметра
  37. Квадратный трехчлен
  38. Производная
  39. Применение производной к исследованию функций
  40. Приложения производной
  41. Дифференциал функции
  42. Дифференцирование в математике
  43. Формулы и правила дифференцирования
  44. Дифференциальное исчисление
  45. Дифференциальные уравнения
  46. Дифференциальные уравнения первого порядка
  47. Дифференциальные уравнения высших порядков
  48. Дифференциальные уравнения в частных производных
  49. Тригонометрические функции
  50. Тригонометрические уравнения и неравенства
  51. Показательная функция
  52. Показательные уравнения
  53. Обобщенная степень
  54. Взаимно обратные функции
  55. Логарифмическая функция
  56. Уравнения и неравенства
  57. Положительные и отрицательные числа
  58. Алгебраические выражения
  59. Иррациональные алгебраические выражения
  60. Преобразование алгебраических выражений
  61. Преобразование дробных алгебраических выражений
  62. Разложение многочленов на множители
  63. Многочлены от одного переменного
  64. Алгебраические дроби
  65. Пропорции
  66. Уравнения
  67. Системы уравнений
  68. Системы уравнений высших степеней
  69. Системы алгебраических уравнений
  70. Системы линейных уравнений
  71. Системы дифференциальных уравнений
  72. Арифметический квадратный корень
  73. Квадратные и кубические корни
  74. Извлечение квадратного корня
  75. Рациональные числа
  76. Иррациональные числа
  77. Арифметический корень
  78. Квадратные уравнения
  79. Иррациональные уравнения
  80. Последовательность
  81. Ряды сходящиеся и расходящиеся
  82. Тригонометрические функции произвольного угла
  83. Тригонометрические формулы
  84. Обратные тригонометрические функции
  85. Теорема Безу
  86. Математическая индукция
  87. Показатель степени
  88. Показательные функции и логарифмы
  89. Множество
  90. Множество действительных чисел
  91. Числовые множества
  92. Преобразование рациональных выражений
  93. Преобразование иррациональных выражений
  94. Геометрия
  95. Действительные числа
  96. Степени и корни
  97. Степень с рациональным показателем
  98. Тригонометрические функции угла
  99. Тригонометрические функции числового аргумента
  100. Тригонометрические выражения и их преобразования
  101. Преобразование тригонометрических выражений
  102. Комбинаторика
  103. Вычислительная математика
  104. Прямая линия на плоскости и ее уравнения
  105. Прямая и плоскость
  106. Линии и уравнения
  107. Прямая линия
  108. Уравнения прямой и плоскости в пространстве
  109. Кривые второго порядка
  110. Кривые и поверхности второго порядка
  111. Числовые ряды
  112. Степенные ряды
  113. Ряды Фурье
  114. Преобразование Фурье
  115. Функциональные ряды
  116. Функции многих переменных
  117. Метод координат
  118. Гармонический анализ
  119. Вещественные числа
  120. Предел последовательности
  121. Аналитическая геометрия
  122. Аналитическая геометрия на плоскости
  123. Аналитическая геометрия в пространстве
  124. Функции одной переменной
  125. Высшая алгебра
  126. Векторная алгебра
  127. Векторный анализ
  128. Векторы
  129. Скалярное произведение векторов
  130. Векторное произведение векторов
  131. Смешанное произведение векторов
  132. Операции над векторами
  133. Непрерывность функций
  134. Предел и непрерывность функций нескольких переменных
  135. Предел и непрерывность функции одной переменной
  136. Производные и дифференциалы функции одной переменной
  137. Частные производные и дифференцируемость функций нескольких переменных
  138. Дифференциальное исчисление функции одной переменной
  139. Матрицы
  140. Линейные и евклидовы пространства
  141. Линейные отображения
  142. Дифференциальные теоремы о среднем
  143. Теория устойчивости дифференциальных уравнений
  144. Функции комплексного переменного
  145. Преобразование Лапласа
  146. Теории поля
  147. Операционное исчисление
  148. Системы координат
  149. Рациональная функция
  150. Интегральное исчисление
  151. Интегральное исчисление функций одной переменной
  152. Дифференциальное исчисление функций нескольких переменных
  153. Отношение в математике
  154. Математическая логика
  155. Графы в математике
  156. Линейные пространства
  157. Первообразная и неопределенный интеграл
  158. Линейная функция
  159. Выпуклые множества точек
  160. Система координат