Оглавление:
При изучении темы «Поверхностные интегралы» вы познакомитесь с понятием интеграла по поверхности от функции трех
переменных и научитесь сводить его к двойному (а затем — к повторному), проецируя заданную поверхность на одну из координатных плоскостей. Кроме того, вы научитесь вычислять интегралы по части цилиндрической и сферической поверхностей.
Поверхностный интеграл первого рода
Постановка задачи. Вычислить поверхностный интеграл
где — часть поверхности, описываемая уравнением F(x,y,z) = 0
и некоторыми неравенствами.
План решения. Поверхностный интеграл сводится к двойному
проецированием на координатную плоскость XOY по формуле
где D — проекция на плоскость XOY,
— угол между нормалью
к поверхности и осью OZ; z(x, у) определяем из уравнения поверхности F(x, у, z) = 0.
Замечание:
Если уравнение F(x,y,z) = 0 не определяет однозначно функцию z = z(x,y), то проецируем на другую координатную плоскость или используем криволинейные координаты (можно
также разбить поверхность на части и воспользоваться аддитивностью интеграла).
1.Единичные нормальные векторы к поверхности, заданной уравнением F(x, у, z) = 0, определяются формулой
2.Проекцию D поверхности на плоскость XOY находим, исключая z из условий, определяющих
.
3.Находим z = z(x, у), решая уравнение F(x, у, z) = 0.
4.Переходим от поверхностного интеграла к двойному по формуле (1) и вычисляем двойной интеграл, сводя его к повторному.
Записываем ответ.
Пример:
Вычислить поверхностный интеграл
где — часть плоскости
расположенная в первом октанте (т.е. ).
Решение:
1.Единичные нормальные векторы к по-
поверхности, заданной уравнением F(x, у, z) = 0, определяются формулой
В данном случае F(x,y,z) = х + 2у + 3z — 1. Следовательно,
2.Поверхность определяется условиями
Ее проекцию D на плоскость XOY находим, исключая z из условий,
определяющих :
Отсюда
3.Из уравнения х + 2у + 3z — 1 = 0 находим z(x, у) = (1 — х — 2у)/3.
4.Переходим от поверхностного интеграла к двойному по формуле (1) и вычисляем двойной интеграл, сводя его к повторному:
Ответ.
Интеграл по цилиндрической поверхности
Постановка задачи. Вычислить поверхностный интеграл
где — часть поверхности
вырезаемая плоскостями
z = 0 и z = h.
План решения.
1.Вводим на заданной поверхности (цилиндре) криволинейные
координаты
В этих координатах поверхность задается условиями
2.Так как
то
3.Вычисляем повторный интеграл и записываем ответ.
Пример:
Вычислить поверхностный интеграл
где — часть поверхности
вырезаемая плоскостями
z = 0, z = 2.
Решение:
1.Вводим на заданной поверхности (цилиндре) криволинейные
координаты
В этих координатах поверхность задается условиями
2.Так как и
то имеем
3.Вычисляем повторный интеграл:
Ответ.
Интеграл по сферической поверхности
Постановка задачи. Вычислить поверхностный интеграл
где — верхняя полусфера
План решения.
1.Вводим на заданной поверхности (сфере) криволинейные координаты
В этих координатах поверхность задается условиями
2.Так как имеем
3.Вычисляем повторный интеграл и записываем ответ.
Пример:
Вычислить поверхностный интеграл
где — верхняя полусфера
Решение:
1.Вводим на заданной поверхности (сфере) криволинейные координаты
В этих координатах поверхность задается условиями
2.Так как и
имеем
3.Вычисляем повторный интеграл:
Ответ.
Определение и свойства поверхностных интегралов





Смотрите также:
Решение задач по математическому анализу
Поверхностный интеграл I рода
Обобщением двойного интеграла является так называемый поверхностный интеграл.
Пусть в точках некоторой поверхности S, с площадью S , пространства Oxyz определена непрерывная функция f(х; у; z). Разобьем поверхность S на п частей площади которых обозначим через ДSi (см. рис. 246), а диаметры — через
В каждой части
возьмем произвольную точку
и составим сумму

Она называется интегральной для функции f(x;y;z) по поверхности S.
Если при интегральная сумма (57.1) имеет пре-дел, то он называется поверхностным интегралом I рода от функции f(x;y;z) по поверхности S и обозначается
Таким образом, по определению,

Отметим, что «если поверхность S гладкая (в каждой ее точке существует касательная плоскость, которая непрерывно меняется с перемещением точки по поверхности), а функция f(x;y;z) непрерывна на этой поверхности, то поверхностный интеграл существует» (теорема существования).
Поверхностный интеграл I рода обладает следующими свойствами:

3. Если поверхность S разбить на части такие, что
а пересечение
состоит лишь из границы, их разделяющей, то

4.Если на поверхности S выполнено неравенство


7.Если f(x; у, z) непрерывна на поверхности S, то на этой поверхности существует точка такая, что

(теорема о среднем значении).
Вычисление поверхностного интеграла I рода
Вычисление поверхностного интеграла I рода сводится к вычислению двойного интеграла по области D — проекции поверхности S на плоскость Оху.
Разобьем поверхность S на части Обозначим через
проекцию
на плоскость Оху. При этом область D окажется разбитой на п частей
Возьмем в произвольную точку
и восстановим перпендикуляр к плоскости Оху до пересечения с поверхностью S . Получим точку
на поверхности
. Проведем в точке М, касательную плоскость и рассмотрим ту ее часть
, которая на плоскость Оху проектируется в область
(см. рис. 247). Площади элементарных частей
обозначим как
соответственно. Будем приближенно считать, что


Обозначив через, острый угол между осью Oz и нормалью п, к поверхности в точке
получаем:

(область есть проекция
на плоскость Оху).
Если поверхность S задана уравнением z = = z(x;y), то, как известно (см. (45.2)), уравнение касательной плоскости в точке есть

где — координаты нормального вектора к плоскости. Острый угол уг есть угол между векторами
и

Следовательно,

Равенство (57.4) принимает вид

В правой части формулы (57.2) заменим (учитывая (57.3)) на полученное выражение для
, a
заменим на
Поэтому, переходя к пределу при стремлении к нулю наибольшего диаметра
(а следовательно, и
), получаем формулу

выражающую интеграл по поверхности S через двойной интеграл по проекции S на плоскость Оху.
Отметим, что если поверхность S задана уравнением вида у = y(x;z) или х = x(y;z), то аналогично получим:

и

где — проекции поверхности S на координатные плоскости Oxz и Oyz соответственно.
Пример:
Вычислить — часть плоскости
расположенной в I октанте (см. рис. 248).
Решение:
Запишем уравнение плоскости в виде
Находим По формуле (57.5) имеем:



Пример:
Вычислить

где S — часть цилиндрической поверхности отсеченной плоскостями z = 0, z = 2 (см. рис. 249).
Решение:
Воспользуемся формулой (57.6). Поскольку


то где — прямоугольник
Некоторые приложения поверхностного интеграла I рода
Приведем некоторые примеры применения поверхностного интеграла I рода.
Площадь поверхности
Если поверхность S задана уравнением z = z(x; у), а ее проекция на плоскость Оху есть область D, в которой z(x;y), zx'(x; у) и zy'(x;y) — непрерывные функции, то ее площадь S вычисляется по формуле

или

Кроме того, поверхностный интеграл применяют для вычисления массы, координат центра масс, моментов инерции материальных поверхностей с известной поверхностной плотностью распределения массы Все эти величины определяются одним и тем же способом: данную область разбивают на конечное число «мелких» частей, делая для каждой области деления упрощающие задачу предположения; находят приближенное значение искомой величины; переходят к пределу при неограниченном измельчении области деления. Проиллюстрируем описанный способ на примере определения массы материальной поверхности.
Масса поверхности
Пусть плотность распределения массы материальной поверхности есть Для нахождения массы поверхности:
- Разбиваем поверхность S на п частей
площадь которой обозначим
.
- Берем произвольную точку
в каждой области
. Предполагаем, что в пределах области
плотность постоянна и равна значению ее в точке
.
- Масса
области
мало отличается от массы
фиктивной однородной области с постоянной плотностью

4. Суммируя по всей области, получаем:
5.За точное значение массы материальной поверхности S принимается предел, к которому стремится полученное приближенное значение при стремлении к нулю диаметров областей , т. е.

т. е.

Моменты, центр тяжести поверхности
Статистические моменты, координаты центра тяжести, моменты инерции материальной поверхности S находятся по соответствующим формулам:


Пример:
Найти массу полусферы радиуса R, если в каждой точке поверхности плотность численно равна расстоянию этой точки от радиуса, перпендикулярного основанию полусферы. Решение: На рисунке 250 изображена полусфера радиуса R. Ее уравнение — поверхностная плотность полусферы.

По формуле (57.7) находим:

Переходим к полярным координатам:

внутренний интеграл вычислен с помощью подстановки r= Rsint:

Поверхностный интеграл II рода
Поверхностный интеграл II рода строится по образцу криволинейного интеграла II рода, где направленную кривую разлагали на элементы и проектировали их на координатные оси; знак брали в зависимости от того, совпадало ли ее направление с направлением оси или нет.
Пусть задана двусторонняя поверхность (таковой является плоскость, эллипсоид, любая поверхность, задаваемая уравнением z =f(x;y), где f(x;y), — функции, непрерывные в некоторой области D плоскости Оху и т.д.). После обхода такой поверхности, не пересекая ее границы, направление нормали к ней не меняется. Примером односторонней поверхности является так называемый лист Мебиуса, получающийся при склеивании сторон АВ и CD прямоугольника ABCD так, что точка А совмещается с точкой С, a В — с D (см. рис. 251).

Далее, пусть в точках рассматриваемой двусторонней поверхности S в пространстве Oxyz определена непрерывная функция f(x; у; z). Выбранную сторону поверхности (в таком случае говорят, что поверхность ориентирована) разбиваем на части , где i = 1,2,…,п, и проектируем их на координатные плоскости. При этом площадь проекции
берем со знаком «плюс», если выбрана верхняя сторона поверхности, или, что то же самое, если нормаль п к выбранной стороне поверхности составляет с осью Oz острый угол (см. рис. 252, а), т. е.
со знаком «минус», если выбрана нижняя сторона поверхности (или
) (см. рис. 252, б). В этом случае интегральная сумма имеет вид

где — площадь проекции
на плоскость Оху. Ее отличие от интегральной суммы (57.1) очевидно.

Предел интегральной суммы (58.1) при если он существует и не зависит от способа разбиения поверхности S на части
и от выбора точек
называется поверхностным интегралом II рода (по координатам) от функции f(x;y;z) по переменным x и у по выбранной стороне поверхности и обозначается

Итак

Аналогично определяются поверхностные интегралы II рода по переменным у и z и z и х:

Общим видом поверхностного интеграла II рода служит интеграл

где P, Q, R — непрерывные функции, определенные в точках двусторонней поверхности S.
Отметим, что если S — замкнутая поверхность, то поверхностный интеграл по внешней стороне ее обозначается , по внутренней
.
Из определения поверхностного интеграла II рода вытекают следующие его свойства:
- Поверхностный интеграл II рода изменяет знак при перемене стороны поверхности.
- Постоянный множитель можно выносить за знак поверхностного интеграла.
- Поверхностный интеграл от суммы функций равен сумме соответствующих интегралов от слагаемых.
- Поверхностный интеграл II рода по всей поверхности
равен сумме интегралов по ее частям
(аддитивное свойство), если
пересекаются лишь по границе, их разделяющей.
- Если
— цилиндрические поверхности с образующими, параллельными соответственно осям Oz, Ох, Оу, то

Вычисление поверхностного интеграла II рода
Вычисление поверхностного интеграла II рода сводится к вычислению двойного интеграла.
Пусть функция R(x; у, z) непрерывна во всех точках поверхности S, заданной уравнением z = z(x; y), где z(x; у) — непрерывная функция в замкнутой области D (или ) — проекции поверхности S на плоскость Оху.
Выберем ту сторону поверхности S, где нормаль к ней образует с осью Oz острый угол. Тогда
Так как , то интегральная сумма (58.1) может быть записана в виде

Правая часть этого равенства есть интегральная сумма для функции R(x;y;z(x;y)), непрерывной в области D. Переходя к пределу в равенстве (58.2) при , получаем формулу

выражающую поверхностный интеграл II рода по переменным х и у через двойной интеграл. Если выбрать вторую сторону, т. е. нижнюю, поверхности S, то полученный двойной интеграл берут со знаком «минус». Поэтому

Аналогично

где — проекции поверхности S на плоскости Oxz и Oyz соответственно (замкнутые области).
В формуле (58.5) поверхность S задана уравнением у = y(x;z), а в формуле (58.6) — уравнением х = x(y;z). Знаки перед интегралами выбираются в зависимости от ориентации поверхности S (так, в формуле (58.5) берем знак «плюс», если нормаль к поверхности образует с осью Оу острый угол, а знак «минус» — если тупой угол).
Для вычисления общего поверхностного интеграла II рода используют формулы (58.4)-(58.6), проектируя поверхность S на все три координатные плоскости:

Замечание:
Можно показать справедливость равенств

— элемент площади поверхности — направляющие косинусы нормали n к выбранной стороне поверхности S.
Поверхностные интегралы I и II рода связаны соотношением

Пример:
Вычислить

по верхней стороне части плоскости 2х — Зу + z = 6, лежащей в IV октанте.
Решение:
На рисунке 253 изображена заданная часть плоскости. Нормаль п, соответствующая указанной стороне поверхности, образует с осью Оу тупой угол, а с осями Ох и Oz — острые. В этом можно убедиться, найдя направляющие косинусы нормального вектора = (2; —3; 1) плоскости:


Поэтому перед двойными интегралами в формулах (58.4) и (58.6) следует брать знак «плюс», а в формуле (58.5) — знак «минус». Следовательно,

Формула Остроградского-Гаусса
Связь между поверхностным интегралом II рода по замкнутой поверхности и тройным интегралом по объему, ограниченному этой поверхностью устанавливает следующая теорема.
Теорема:
Если функции P(x;y;z), Q(x;y,z), R(x;y;z) непрерывны вместе со своими частными производными первого порядка в пространственной области V, то имеет место формула

где S — граница области V и интегрирование по S производится по ее внешней стороне.
Формула (58.9) называется формулой Остроградского-Гаусса (является аналогом формулы Остроградского-Грина (см. п. 56.3).
Пусть область V ограничена снизу поверхностью , уравнение которой
сверху — поверхностью
, уравнение которой
(функции
непрерывны в замкнутой области D — проекции V на плоскость
, сбоку — цилиндрической поверхностью
, образующие которой параллельны оси Oz (см. рис. 254).
Рассмотрим тройной интеграл


Двойные интегралы в правой части равенства заменим поверхностными интегралами II рода по внешней стороне поверхностей соответственно (см. (58.3)). Получаем:

Добавляя равный нулю интеграл по внешней стороне
(см. свойство 5 п. 58.1), получим:

или

где S — поверхность, ограничивающая область V. Аналогично доказываются формулы

Складывая почленно равенства (58.10), (58.11) и (58.12), получаем формулу (58.9) Остроградского-Гаусса.
Замечания:
- Формула (58.9) остается справедливой для любой области V, которую можно разбить на конечное число областей рассмотренного вида.
- Формулу Остроградского-Гаусса можно использовать для вычисления поверхностных интегралов II рода по замкнутым поверхностям.
Пример:
Вычислить

где S — внешняя сторона пирамиды, ограниченной плоскостями 2х — Зу + z = 6, х = 0, у = 0, z = 0.
Решение:
По формуле (58.9) находим:

Заметим, что интеграл (см. пример 58.1) можно вычислить иначе:

где поверхности есть соответственно треугольники ОАС, АОВ, СОВ (см. рис. 255). Имеем:


Формула Стокса
Связь между поверхностными и криволинейными интегралами II рода устанавливает следующая теорема.
Теорема:
Если функции P(x;y;z), Q(x;y;z) и R(x;y;z) непрерывны вместе со своими частными производными первого порядка в точках ориентированной поверхности S, то имеет место формула

где L — граница поверхности S и интегрирование вдоль кривой L производится в положительном направлении (т. е. при обходе границы L поверхность S должна оставаться все время слева).
Формула (58.13) называется формулой Стокса (Д. Г. Стоке — английский математик, физик).
Пусть z = f(x;y) — уравнение поверхности S, функции непрерывны в замкнутой области D (проекции поверхности S на плоскость Оху),
— граница области D (см. рис. 256).

Будем считать, что поверхность S пересекается с любой прямой, параллельной оси Oz, не более чем в одной точке. Выберем верхнюю сторону поверхности S. Рассмотрим сначала интеграл вида
Значения функции Р(х; у; z) на L равны значениям функции P(x; y;z(x;y)) на . Интегральные суммы для криволинейных интегралов II рода по контурам
совпадают. Поэтому

Применим к этому интегралу формулу Остроградского-Грина (см. п. 56.3). Тогда получим:

Преобразуем полученный двойной интеграл в равный ему поверхностный интеграл II рода (см. п. 58.2). Для этого последнее равенство перепишем в виде

(см. 58.7) и используем уравнение нормали к поверхности S (см. (45.3)). Так как выбрана верхняя сторона поверхности S, т. е. — острый угол между нормалью
к поверхности S и осью Oz), то нормаль
имеет проекции
1. Направляющие косинусы пропорциональны соответствующим проекциям:

Отсюда Тогда

Следовательно,

Аналогично получаются при соответствующих условиях еще два равенства:

Складывая почленно три последних равенства, получаем формулу Стокса (58.13).
Отметим, что формулу Стокса (58.13) можно применить и для поверхностей более сложного вида (разбив ее на части рассмотренного выше типа).
Формулу Стокса можно применять для вычисления криволинейного интеграла по замкнутому контуру с помощью поверхностного интеграла.
Из формулы Стокса вытекает, что если выполняются условия

то криволинейный интеграл по произвольному пространственному замкнутому контуру L равен нулю:

Следовательно, в данном случае криволинейный интеграл не зависит от вида пути интегрирования.
Пример:
Вычислить где контур L — окружность
а) непосредственно,
б) используя формулу Стокса, взяв в качестве поверхности полусферу
Решение: Поверхность интегрирования изображена на рисунке 257.

а) Запишем уравнение окружности в параметрической форме:

По формуле (56.7) имеем:



б) По формуле Стокса (58.13) находим:

Переходя к полярным координатам, получаем:


Некоторые приложения поверхностного интеграла II рода
С помощью поверхностного интеграла 11 рода можно найти объем тела, ограниченного сверху поверхностью снизу — поверхностью
сбоку — цилиндрической поверхностью
, образующие которой параллельны оси Oz:

где
Действительно, положив в формуле Остроградского-Гаусса (58.9) находим:

Аналогично, полагая P = 0, Q = у, R = 0, находим еще одну формулу для нахождения объема тела с помощью поверхностного интеграла II рода:

Наконец, положив Р = 0, Q = 0, R = z, по формуле (58.9) находим третью формулу

выражающую объем тела через поверхностный интеграл II рода.
Сложив почленно равенства (58.15)-(58.17) и разделив на три, получим формулу (58.14).
Решение заданий и задач по предметам:
Дополнительные лекции по высшей математике:
- Тождественные преобразования алгебраических выражений
- Функции и графики
- Преобразования графиков функций
- Квадратная функция и её графики
- Алгебраические неравенства
- Неравенства
- Неравенства с переменными
- Прогрессии в математике
- Арифметическая прогрессия
- Геометрическая прогрессия
- Показатели в математике
- Логарифмы в математике
- Исследование уравнений
- Уравнения высших степеней
- Уравнения высших степеней с одним неизвестным
- Комплексные числа
- Непрерывная дробь (цепная дробь)
- Алгебраические уравнения
- Неопределенные уравнения
- Соединения
- Бином Ньютона
- Число е
- Непрерывные дроби
- Функция
- Исследование функций
- Предел
- Интеграл
- Двойной интеграл
- Тройной интеграл
- Интегрирование
- Неопределённый интеграл
- Определенный интеграл
- Криволинейные интегралы
- Несобственные интегралы
- Кратные интегралы
- Интегралы, зависящие от параметра
- Квадратный трехчлен
- Производная
- Применение производной к исследованию функций
- Приложения производной
- Дифференциал функции
- Дифференцирование в математике
- Формулы и правила дифференцирования
- Дифференциальное исчисление
- Дифференциальные уравнения
- Дифференциальные уравнения первого порядка
- Дифференциальные уравнения высших порядков
- Дифференциальные уравнения в частных производных
- Тригонометрические функции
- Тригонометрические уравнения и неравенства
- Показательная функция
- Показательные уравнения
- Обобщенная степень
- Взаимно обратные функции
- Логарифмическая функция
- Уравнения и неравенства
- Положительные и отрицательные числа
- Алгебраические выражения
- Иррациональные алгебраические выражения
- Преобразование алгебраических выражений
- Преобразование дробных алгебраических выражений
- Разложение многочленов на множители
- Многочлены от одного переменного
- Алгебраические дроби
- Пропорции
- Уравнения
- Системы уравнений
- Системы уравнений высших степеней
- Системы алгебраических уравнений
- Системы линейных уравнений
- Системы дифференциальных уравнений
- Арифметический квадратный корень
- Квадратные и кубические корни
- Извлечение квадратного корня
- Рациональные числа
- Иррациональные числа
- Арифметический корень
- Квадратные уравнения
- Иррациональные уравнения
- Последовательность
- Ряды сходящиеся и расходящиеся
- Тригонометрические функции произвольного угла
- Тригонометрические формулы
- Обратные тригонометрические функции
- Теорема Безу
- Математическая индукция
- Показатель степени
- Показательные функции и логарифмы
- Множество
- Множество действительных чисел
- Числовые множества
- Преобразование рациональных выражений
- Преобразование иррациональных выражений
- Геометрия
- Действительные числа
- Степени и корни
- Степень с рациональным показателем
- Тригонометрические функции угла
- Тригонометрические функции числового аргумента
- Тригонометрические выражения и их преобразования
- Преобразование тригонометрических выражений
- Комбинаторика
- Вычислительная математика
- Прямая линия на плоскости и ее уравнения
- Прямая и плоскость
- Линии и уравнения
- Прямая линия
- Уравнения прямой и плоскости в пространстве
- Кривые второго порядка
- Кривые и поверхности второго порядка
- Числовые ряды
- Степенные ряды
- Ряды Фурье
- Преобразование Фурье
- Функциональные ряды
- Функции многих переменных
- Метод координат
- Гармонический анализ
- Вещественные числа
- Предел последовательности
- Аналитическая геометрия
- Аналитическая геометрия на плоскости
- Аналитическая геометрия в пространстве
- Функции одной переменной
- Высшая алгебра
- Векторная алгебра
- Векторный анализ
- Векторы
- Скалярное произведение векторов
- Векторное произведение векторов
- Смешанное произведение векторов
- Операции над векторами
- Непрерывность функций
- Предел и непрерывность функций нескольких переменных
- Предел и непрерывность функции одной переменной
- Производные и дифференциалы функции одной переменной
- Частные производные и дифференцируемость функций нескольких переменных
- Дифференциальное исчисление функции одной переменной
- Матрицы
- Линейные и евклидовы пространства
- Линейные отображения
- Дифференциальные теоремы о среднем
- Теория устойчивости дифференциальных уравнений
- Функции комплексного переменного
- Преобразование Лапласа
- Теории поля
- Операционное исчисление
- Системы координат
- Рациональная функция
- Интегральное исчисление
- Интегральное исчисление функций одной переменной
- Дифференциальное исчисление функций нескольких переменных
- Отношение в математике
- Математическая логика
- Графы в математике
- Линейные пространства
- Первообразная и неопределенный интеграл
- Линейная функция
- Выпуклые множества точек
- Система координат