Системы уравнений высших степеней в математике с примерами решения и образцами выполнения

Системы двух уравнений первой и второй степени с двумя неизвестными:

Общий вид многочлена второй степени от двух переменных у и x, очевидно, следующий:

Системы уравнений высших степеней

где а, b, с, d, е, f—данные числа. Общий вид системы уравнений с двумя неизвестными, состоящей из одного уравнения первой степени и одного уравнения второй степени, следующий:

Системы уравнений высших степеней

Система такого вида легко решается способом подстановки. Именно, из второго уравнения можно выразить одно из неизвестных через другое и затем подставить в первое уравнение. В результате этого первое уравнение превратится в уравнение с одним неизвестным, вообще говоря, квадратное. Решив это уравнение, мы сможем определить затем и значения нового неизвестного.

При этом способе решения систем проверка полученных решений посредством подстановки в уравнение системы не обязательна и производится только для контроля правильности вычислений, ибо можно доказать, что при исключении одного неизвестного указанным способом лишних решений возникнуть не может.

Пример:

Решить систему

Системы уравнений высших степеней

Решение:

Исключим из системы неизвестное у. С этой целью решим второе уравнение относительно у. Получим Системы уравнений высших степеней Затем подставим найденное выражение для у в первое уравнение. Получим

Системы уравнений высших степеней

откуда после преобразований

Системы уравнений высших степеней

и, следовательно, Системы уравнений высших степенейСоответствующие значения для у равны

Системы уравнений высших степеней

Ответ. Система имеет два решения

Системы уравнений высших степеней

Тот же прием исключения следует применять при решении систем трех уравнений с тремя неизвестными, если два уравнения имеют первую степень, третье квадратное. При этом из двух уравнений первой степени нужно выразить два неизвестных через третье неизвестное, и полученные выражения подставить в уравнение второй степени.

Таким же образом можно поступать при решении систем я уравнений с п неизвестными при любом я, если все уравнения, кроме одного квадратного, имеют первую степень.

Пример:

Решить систему

Системы уравнений высших степеней

Решение:

Перепишем два последних уравнения системы в виде

Системы уравнений высших степеней

Решая эту систему относительно х и у по обычным правилам, получим

Системы уравнений высших степеней

Подставив эти выражения в первое уравнение, получим

Системы уравнений высших степеней

откуда

Системы уравнений высших степеней

Остается определить соответствующие значения для х и у, что делается подстановкой значений z₁, и z₂ в выражении х и у через z. Мы получим два решения системы:

Системы уравнений высших степеней

Системы уравнений, решаемые особыми приемами

В гл. II, § 9 мы рассматривали системы уравнений вида

Системы уравнений высших степеней

которые легко решаются при помощи формул Виета. Но, конечно, можно решать такие системы и способом исключения, описанным в предыдущем параграфе.

Часто встречающиеся системы уравнений вида

Системы уравнений высших степеней

легко решаются методом исключения, но их можно решать и иначе. Именно, возведя в квадрат второе уравнение и вычитая из него первое, мы получим новое уравнение

Системы уравнений высших степеней

которое является следствием данной системы. Объединив его с уравнением

Системы уравнений высших степеней

мы получим систему, решаемую при помощи формул Виета.

Пример:

Решить систему

Системы уравнений высших степеней

Решение:

Если х и у удовлетворяют уравнениям системы, то Системы уравнений высших степеней и следовательно, 2ху = — 8; ху = — 4. Таким образом, из данной системы следует система

Системы уравнений высших степеней

для которой получаем два решения

Системы уравнений высших степеней

Оба они удовлетворяют уравнениям исходной системы.

Ответ.

Системы уравнений высших степеней

Еще проще решаются системы вида

Системы уравнений высших степеней

Действительно, х² — y² = (x — у)(х + у), и потому если допустить, что х и у удовлетворяют обоим уравнениям системы, то (х—у) b = а, и следовательно,Системы уравнений высших степеней что вместе с уравнением х + у = b дает систему двух уравнений первой степени с двумя неизвестными, являющуюся следствием исходной системы, которую легко решить. Таким же образом решается и система вида

Системы уравнений высших степеней

Пример:

Решить систему

Системы уравнений высших степеней

Решение:

Если х и у удовлетворяют уравнениям системы, то

Системы уравнений высших степеней

и следовательно, х + у =b. Решая систему

Системы уравнений высших степеней

получим х = 4; v = 1.

Ответ. х = 4; v = 1.

Наконец отметим системы вида

Системы уравнений высших степеней

Такие системы уравнений можно решить способом исключения, именно, в силу второго уравнения Системы уравнений высших степенейчто при подстановке в первое уравнение дает уравнение относительно х, легко сводящееся к биквадратному.

Однако здесь следует рекомендовать другой прием. Именно, если к первому уравнению добавить, а затем вычесть удвоенное второе, то мы получим новую систему

Системы уравнений высших степеней

являющуюся следствием исходной.

Но новая система легко решается, ибо из нее следует, что

Системы уравнений высших степеней

и система распадается на 4 системы уравнений первой степени

Системы уравнений высших степеней

Следует отметить, что сопоставление результатов решения рассмотренной системы по способу исключения и при помощи указанного искусственного приема приводит к тем же соотношениям, которые были получены из сопоставления двух способов решения биквадратного уравнения.

Системы двух уравнений второй степени, не содержащие линейных членов

Решение системы двух уравнений второй степени с двумя неизвестными общего вида

Системы уравнений высших степеней

представляет значительные трудности. Именно, можно доказать, что решение такой системы зачастую сводится к решению уравнения четвертой степени, а нахождение решения общего уравнения четвертой степени представляет довольно сложную задачу, не входящую в рамки курса элементарной алгебры.

Для некоторых систем частного вида возможно элементарное решение. Важным примером таких систем являются системы двух квадратных уравнений, каждое из которых не содержит членов первой степени относительно неизвестных, т. е. системы вида

Системы уравнений высших степеней

В этом случае система решается посредством уничтожения свободных членов. Это делается так. Первое уравнение умножается на f₁ второе на f и полученные уравнения вычитаются. Составленное так новое уравнение является следствием исходной системы и имеет вид Ах²+Вху+Су² =0, из которого следует, что

Системы уравнений высших степеней

(если только у ≠ 0), откуда мы можем определить отношение

Найдя это отношение, мы можем выразить х через у и затем подставить в одно из уравнений исходной системы. Получившееся в результате неполное квадратное уравнение относительно у легко решается.

Нетрудно видеть, что если А ≠ 0 и хотя бы один из свободных членов в исходных уравнениях отличен от 0, то сделанное выше предположение у ≠ 0 не нарушает общности.

Действительно, если в уравнении Ах² + Вху + Су² == 0 при А ≠ 0 положим у = 0, то и х = 0. Но x = 0; y = 0 не может быть решением исходной системы, если хотя бы один из ее свободных членов отличен от нуля.

Если же коэффициент А = 0, то решение вспомогательного уравнения Вху + Су² = 0 только упрощается, для решения достаточно вынести за скобку у и приравнять к нулю каждый множитель.

Пример:

Решить уравнение

Системы уравнений высших степеней

Решение:

Умножив первое уравнение на 7 и второе на 3, получим после вычитания

Системы уравнений высших степеней

откуда

Системы уравнений высших степеней

Таким образом, х = 22у или х = 2у. Дальнейшее очевидно. Доведя решение до конца, получим четыре решения системы

Системы уравнений высших степеней

Решение систем уравнений высших степеней

Задача о решении системы уравнений высших степеней с несколькими неизвестными в общем случае является очень трудной, часто не допускающей решения средствами элементарной алгебры. Однако во многих случаях, комбинируя известные методы решения уравнений и систем уравнений — метод сложения и вычитания, исключения неизвестного с помощью подстановки, введения нового неизвестного— удается найти путь к решению системы. Но в каждой отдельной задаче приходится использовать ее частные особенности для того, чтобы найти удачный метод решения. Рассмотрим несколько примеров.

Пример:

Решить систему уравнений.

Системы уравнений высших степеней

Решение:

Способ 1. Из второго уравнения находим, что у = 3 — х. Подставив в первое уравнение, получаем

Системы уравнений высших степеней

и, после упрощений,

Системы уравнений высших степеней

откуда

Системы уравнений высших степеней

Соответствующие значения для у будут такими:

Системы уравнений высших степеней

Система имеет два решения.

Способ 2. Представим х³ + y³ = 18 как

Системы уравнений высших степеней

Принимая во внимание второе уравнение, получим 27 — 9xy = 18, откуда ху = 1. Система

Системы уравнений высших степеней

есть следствие исходной, но и исходная есть следствие преобразованной, ибо если х + у = 3; ху = 1, то

Системы уравнений высших степеней

Решая преобразованную систему при помощи формул Виета, получим те же два решения:

Системы уравнений высших степеней

Ответ.

Системы уравнений высших степеней

Пример:

Решить систему

Системы уравнений высших степеней

Решение:

Исключение одной из неизвестных величин приводит к решению уравнения четвертой степени, в котором все коэффициенты отличны от нуля. Поэтому лучше избежать этого пути. Это легко сделать, введя новую неизвестную z = xy. Тогда

Системы уравнений высших степеней

Таким образом, для z получаем уравнение

Системы уравнений высших степеней

откуда z₁ = 47; z₂ = 3.

Итак, данная система расщепилась на две системы:

Системы уравнений высших степеней

первая из которых не имеет действительных решений, а вторая имеет следующие решения:

Системы уравнений высших степеней

Ответ.

Системы уравнений высших степеней

Указанный прием удобно применять к системам двух уравнений с двумя неизвестными, в случае если каждое из уравнений симметрично относительно х и у, т. е. если уравнения не изменяются при перемене х и у местами.

Пример:

Решить систему уравнений:

Системы уравнений высших степеней

Решение:

Перемножив уравнения системы, получим

Системы уравнений высших степеней

откуда xyz = ±30. Но так как ху = 5, то отсюда следует, что =5z±30 и z = ±6. Теперь х и у легко определить из второго и третьего уравнений системы. Мы приходим к двум решениям:

Системы уравнений высших степеней

Ответ.

Системы уравнений высших степеней

Пример:

Решить систему уравнений

Системы уравнений высших степеней

Решение:

Возвысив обе части первого уравнения в квадрат, получим

Системы уравнений высших степеней

Вычитая из этого уравнения второе уравнение данной системы, получим 2x³y³ = 686, откуда (xy)³ = 343; ху = 7. Теперь из первого уравнения данной системы находим, что Системы уравнений высших степенейИтак, решение данной системы свелось к решению системы

Системы уравнений высших степеней

откуда

Системы уравнений высших степеней

Пример:

Решить систему уравнений

Системы уравнений высших степеней

Решение:

В первом уравнении раскроем скобки в каждом множителе. Затем поделим обе части обоих уравнений на ху. Получим

Системы уравнений высших степеней

Теперь введем новые неизвестные Системы уравнений высших степенейВ новых неизвестных преобразованная система имеет такой вид:

Системы уравнений высших степеней

Эта система легко решается. Получаем:

Системы уравнений высших степеней

Далее находим значения для х и у из уравнений Системы уравнений высших степеней

Всего получим восемь решений:

Системы уравнений высших степеней

Многообразие приемов, которые могут применяться при решении систем уравнений высших степеней, неисчерпаемо, и тем не менее найти путь к решению данной системы удается далеко не всегда. Важно проявлять изобретательность при решении системы в тех случаях, когда это возможно.

Графическое решение уравнений с одним неизвестным

Как уже было сказано, алгебраические методы решения систем уравнений далеко не всегда применимы. Но для целей практики бывает важно находить решения систем уравнений хотя бы приближенно. Эта цель хорошо достигается применением графических методов. Сначала рассмотрим применение графиков к приближенному решению одного уравнения с одним неизвестным.

Пусть дано уравнение х²- 4x+1 = 0. Для того чтобы графически решить такое уравнение, рассматриваем неизвестное х как независимое переменное, а левую часть уравнения как функцию этой переменной, т. е. введем в рассмотрение функцию y = x²-4x+1

Решить предложенное уравнение — значит узнать, при каких значениях независимой переменной х функция у обращается в нуль.

Системы уравнений высших степеней

Точки графика, соответствующие таким значениям независимой переменной, лежат на оси абсцисс, ибо ордината каждой такой точки равна нулю. Следовательно, интересующие нас точки графика являются точками пересечения графика с осью абсцисс, а корни уравнения x²-4x+1=0 являются абсциссами этих точек пересечения. При этом абсцисса каждой точки пересечения графика с осью абсцисс является корнем уравнения x²-4x+1=0

Строим график функции y = x²-4x+1 Он имеет вид параболы с вершиной в точке (2,-3) (рис. 68). По чертежу находим, что Системы уравнений высших степеней В действительности

Системы уравнений высших степеней

Совершенно такие же рассуждения можно применить к любому уравнению .у —0, где у есть алгебраическое выражение от неизвестной х. Именно, для графического решения такого уравнения нужно построить график выражения у, рассматриваемого как функция от переменной х, и найти точки пересечения этого графика с осью абсцисс. Абсциссы точек пересечения будут корнями уравнения. Конечно, при графическом решении уравнений корни получаются приближенно и довольно грубо, так как на чертеже произвести измерение абсцисс с высокой степенью точности невозможно.

Пример:

Решить уравнение

Системы уравнений высших степеней

Решение:

Строим график функции у = x³ — 4x + 1, вычислив предварительно таблицу значений:

Системы уравнений высших степеней
Системы уравнений высших степеней


По результатам этих вычислений мы видим, что при изменении х от —3 до —2 функция переходит от отрицательных значений к положительным, на участке от 0 до 1 переходит от положительных значений к отрицательным и на участке от 1 до 2 снова от отри-
нательных значений к положительным. На этих участках и следует ожидать, что график пересечет ось абсцисс.

Системы уравнений высших степеней

Проводим вычисления для некоторых промежуточных значений х, взятых на этих участках с целью уточнения хода функции:

Системы уравнений высших степеней

Теперь построим график по всем вычисленным точкам, соединив их плавной линией (рис. 69).

Из этого чертежа мы получаем:Системы уравнений высших степеней

Для того чтобы уточнить значения корней, следует построить в бoльшем масштабе участки графика, примыкающие к корням, вычислив дополнительно значения функции на этих участках. Например, для уточнения корня х₃ проведем следующее вычисление:

Системы уравнений высших степеней

Изобразим эти точки на чертеже, приняв большую единицу масштаба (рис. 70).

На таком малом участке изменения х мы вправе считать, что график очень близок к прямой линии. Исходя из этого предположения, получим

Графическое решение систем двух уравнений с двумя неизвестными

Пусть дана система уравнений с двумя неизвестными х и у. Каждое из этих уравнений, взятое отдельно, определяет зависимость между величинами х и у.

Построим на одном чертеже графики этих зависимостей. Числа (x₀y₀), образующие решение системы, должны удовлетворять обоим уравнениям системы, а следовательно, точка с координатами (х₀ у₀) должна лежать на графиках обеих зависимостей, т. е. должна являться точкой пересечения этих графиков.

Обратно, координаты (x₀у₀) любой точки пересечения построенных графиков удовлетворяют обоим уравнениям системы, т. е. образуют решение системы.

Таким образом, для того чтобы графически решить систему двух уравнений с двумя неизвестными, нужно построить график для каждого из уравнений и найти точки пересечения этих графиков. Координаты каждой точки пересечения образуют решение системы.

Пример:

Решить графически систему уравнений

Системы уравнений высших степеней

Решение:

Алгебраическое решение этой системы затруднительно. Хотя неизвестное у и легко исключается посредством подстановки в первое уравнение его выражения через дг из второго уравнения, но в результате такого исключения получается уравнение четвертой степени относительно х, решение которого выходит за рамки элементарного курса алгебры.

Системы уравнений высших степеней

Обратимся к построению графиков. Графиком зависимости х² + у² = 9 является, как мы видели (гл. III, § 3, третий пример), окружность с центром в начале координат и радиусом, равным 3. Графиком зависимости у= 2х² — 2х — 3 является парабола, которую легко построить по таблице значений (рис. 71). Графики пересекаются в четырех точках, координаты которых суть приближенно (—1,2; 2,7); (0; —3); (1,1; —2,8) и (2,2: 2,0).

Следовательно, данная система имеет четыре решения

Системы уравнений высших степеней

Второе решение оказывается точным. Остальные три — приближенные.

Графическое решение системы двух уравнений с двумя неизвестными почти не сложнее графического решения одного уравнения с одним неизвестным, а иногда даже проще.

Поэтому часто бывает полезно преобразовать посредством введения нового неизвестного одно уравнение с одним неизвестным в систему двух уравнений с двумя неизвестными, а затем решать эту систему графически. При таком преобразовании следует заботиться о том, чтобы построение графиков обоих уравнений полученной системы было как можно проще.

Рассмотрим несколько примеров на применение этого приема.

Пример:

Решить графически уравнение

Системы уравнений высших степеней

Решение:

Представим предложенное уравнение в виде x²=x+1. Мы видим, что в левой и правой частях уравнения находятся некоторые функции от х. Решить уравнение — значит найти, при каких значениях независимого параметра обе функции принимают равные значения. Графически это означает, что нужно найти абсциссы точек пересечения графиков функций у = х² и у =х 1.

Действительно, если при х = а а² = а + 1, то это значит, что точка (а, а²) совпадает с точкой (a, a+1) и, следовательно, принадлежит как графику функции у = х², так и графику функции у = х + 1.

Очевидно и обратное. Если графики функций у = х² и у = x + 1 пересекаются в точке (а, b), то b = a² = a + 1 и, следовательно, при х = а обе функции принимают равные значения. Все сказанное можно коротко изложить так.

Вводим новую неизвестную y = х². Тогда данное уравнение переходит в уравнение у — х—1= 0, которое вместе с введенной зависимостью дает систему

Графиком зависимости у = х² является .парабола, графиком зависимости у = х + 1— прямая линия (рис. 72). Решение задачи дают абсциссы точек пересечения. Они равны приближенно: Системы уравнений высших степеней

Системы уравнений высших степеней

Любое приведенное квадратное уравнение х² + рх + q = 0 может быть решено тем же образом, посредством преобразования в систему

Системы уравнений высших степеней

Это удобно тем, что графиком первой зависимости является одна и та же парабола, а графиком второй зависимости является прямая линия, которую очень легко построить в каждом частном случае по двум точкам. Поэтому, тщательно построив в большом масштабе параболу у=х3, мы получаем возможность быстро решать любое приведенное квадратное уравнение.

Подобным образом для решения кубического уравнения, имеющего вид х³ + рх + q = 0, достаточно заготовить график функции у = х³. Абсциссы точек пересечения этого графика с прямой у + рх + q = 0 дают корни уравнения x³ + + q = 0.

Пример:

Превратив в систему, решить графически уравнение

Системы уравнений высших степеней

Решение:

Это делают приемом, указанным выше. Однако это можно сделать и иначе. Именно, перепишем уравнение в виде х(х² — 4)+1=0

и положим х² — 4 = у. Уравнение заменится системой

Системы уравнений высших степеней

Графиком первого уравнения системы является парабола, графиком второго — гипербола (рис. 73). Абсциссы точек пересечения суть Системы уравнений высших степенейСистемы уравнений высших степеней

Этим приемом можно решить любое кубическое уравнение

Системы уравнений высших степеней

Графиком первого уравнения является парабола, графиком второго — гипербола.

Решение уравнения четвертой степени ах⁴ + bх² + сх + d = 0 при с ≠ 0 легко сводится к определению точки пересечения двух парабол.

Системы уравнений высших степеней

Для этого вводим новое неизвестное у = х² У и уравнение заменяем системой

Системы уравнений высших степеней

Графиком первого уравнения является парабола с вершиной в начале координат и осью, совпадающей с осью ординат. Графиком второго уравнения тоже является парабола, но только ее ось параллельна оси абсцисс. Действительно, решив второе уравнение относительно х, мы получим

Системы уравнений высших степеней

т. с. х является квадратичной функцией от у, графиком которой является парабола с осью, параллельной оси абсцисс.

Из рассмотренных примеров ясно, что каждое данное уравнение с одним неизвестным можно преобразовать а систему двух уравнений с двумя неизвестными многими способами и при выборе какого-нибудь способа следует заботиться о наиболее выгодном расположении графиков на чертеже.

Уточнение корня уравнения или решения системы нелинейных уравнений, исходя из грубого приближения

При графическом решении корень уравнения или решение системы уравнение определяется лишь грубо приближенно. Уточнение результата за счет увеличения масштаба не очень эффективно, так как повышение точности требует пропорционального увеличения масштаба. Например, чтобы определить новую значащую цифру после занятой в десятичном разложении корня, т. е. увеличить точность в 10 раз, нужно и масштаб увеличить в 10 раз.

Однако существует весьма хорошо действующий алгебраический способ для подобного рода уточнения. Мы не будем излагать его в общем виде, а ограничимся только рассмотрением примеров его применения.

Пример:

Для уравнения x³ — 4x + 1= 0 известно приближенное значение одного из корней х ≈1,8. Требуется вычислить этот корень с большей точностью.

Решение:

Поступаем так. Положим x =1,8 + h, где h — новая неизвестная. Мы можем быть уверены, что h есть маленькое число, во всяком случае меньшее, чем 0,1. Подставив в уравнение вместо х его выражение через h, получим

Системы уравнений высших степеней

или

Системы уравнений высших степеней

Так как h² меньше h во столько же раз, во сколько h меньше единицы, для приближенного вычисления h отбросим в полученном уравнении члены с h² и h³. Получим

Системы уравнений высших степеней

Итак,

Системы уравнений высших степеней

Для дальнейшего уточнения мы можем еще раз применить тот лее прием. Положим x≈1,86 + h₁,. Для h₁ получим, отбрасывая члены, содержащие h₁² и h₁³, приближенное уравнение

Системы уравнений высших степеней

(При этом нет надобности вычислять коэффициенты при h₁² и h₁³ , ибо соответствующие члены мы все равно отбрасываем.) Отсюда h≈ 0,0008 и, следовательно,x ≈ 1,8608.

Продолжая этот прием, мы можем получить значение корня уравнения с любой степенью точности.

В общем виде идея метода такова. Если х₀ есть приближенное значение корня данного уравнения, мы полагаем в уравнении x= x₀ + h и в полученном уравнении относительно h отбрасываем члены, содержащие h выше, чем в первой степени, и решаем приближенно получившееся уравнение первой степени относительно h. Тогда число x₁ = x₀ + h оказывается, вообще говоря, значительно лучшим приближением к корню, чем исходное приближение х₀. В случае надобности процесс можно повторить.

Пример:

Для одного решения системы уравнений

Системы уравнений высших степеней

известны приближенные значения х ≈ 2,2, у ≈ 2,0. Найти решение с большей точностью.

Решение:

Будем действовать тем же способом, как при уточнении корня одного уравнения с одним неизвестным. Именно, положим x = 2,2 + h; .у = 2,0 + к и, подставив в уравнение, отбросим все члены, содержащие h², k², hk, так как эти величины значительно меньше самих h и k. Получим

Системы уравнений высших степеней

Решив эту систему, получим h ≈ — 0,03, k ≈ 0,07. Таким образом, уточненными значениями для х и у являются значения

Системы уравнений высших степеней

Для дальнейшего уточнения можно повторить тот же процесс.

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

  1. Тождественные преобразования алгебраических выражений
  2. Функции и графики
  3. Преобразования графиков функций
  4. Квадратная функция и её графики
  5. Алгебраические неравенства
  6. Неравенства
  7. Неравенства с переменными
  8. Прогрессии в математике
  9. Арифметическая прогрессия
  10. Геометрическая прогрессия
  11. Показатели в математике
  12. Логарифмы в математике
  13. Исследование уравнений
  14. Уравнения высших степеней
  15. Уравнения высших степеней с одним неизвестным
  16. Комплексные числа
  17. Непрерывная дробь (цепная дробь)
  18. Алгебраические уравнения
  19. Неопределенные уравнения
  20. Соединения
  21. Бином Ньютона
  22. Число е
  23. Непрерывные дроби
  24. Функция
  25. Исследование функций
  26. Предел
  27. Интеграл
  28. Двойной интеграл
  29. Тройной интеграл
  30. Интегрирование
  31. Неопределённый интеграл
  32. Определенный интеграл
  33. Криволинейные интегралы
  34. Поверхностные интегралы
  35. Несобственные интегралы
  36. Кратные интегралы
  37. Интегралы, зависящие от параметра
  38. Квадратный трехчлен
  39. Производная
  40. Применение производной к исследованию функций
  41. Приложения производной
  42. Дифференциал функции
  43. Дифференцирование в математике
  44. Формулы и правила дифференцирования
  45. Дифференциальное исчисление
  46. Дифференциальные уравнения
  47. Дифференциальные уравнения первого порядка
  48. Дифференциальные уравнения высших порядков
  49. Дифференциальные уравнения в частных производных
  50. Тригонометрические функции
  51. Тригонометрические уравнения и неравенства
  52. Показательная функция
  53. Показательные уравнения
  54. Обобщенная степень
  55. Взаимно обратные функции
  56. Логарифмическая функция
  57. Уравнения и неравенства
  58. Положительные и отрицательные числа
  59. Алгебраические выражения
  60. Иррациональные алгебраические выражения
  61. Преобразование алгебраических выражений
  62. Преобразование дробных алгебраических выражений
  63. Разложение многочленов на множители
  64. Многочлены от одного переменного
  65. Алгебраические дроби
  66. Пропорции
  67. Уравнения
  68. Системы уравнений
  69. Системы алгебраических уравнений
  70. Системы линейных уравнений
  71. Системы дифференциальных уравнений
  72. Арифметический квадратный корень
  73. Квадратные и кубические корни
  74. Извлечение квадратного корня
  75. Рациональные числа
  76. Иррациональные числа
  77. Арифметический корень
  78. Квадратные уравнения
  79. Иррациональные уравнения
  80. Последовательность
  81. Ряды сходящиеся и расходящиеся
  82. Тригонометрические функции произвольного угла
  83. Тригонометрические формулы
  84. Обратные тригонометрические функции
  85. Теорема Безу
  86. Математическая индукция
  87. Показатель степени
  88. Показательные функции и логарифмы
  89. Множество
  90. Множество действительных чисел
  91. Числовые множества
  92. Преобразование рациональных выражений
  93. Преобразование иррациональных выражений
  94. Геометрия
  95. Действительные числа
  96. Степени и корни
  97. Степень с рациональным показателем
  98. Тригонометрические функции угла
  99. Тригонометрические функции числового аргумента
  100. Тригонометрические выражения и их преобразования
  101. Преобразование тригонометрических выражений
  102. Комбинаторика
  103. Вычислительная математика
  104. Прямая линия на плоскости и ее уравнения
  105. Прямая и плоскость
  106. Линии и уравнения
  107. Прямая линия
  108. Уравнения прямой и плоскости в пространстве
  109. Кривые второго порядка
  110. Кривые и поверхности второго порядка
  111. Числовые ряды
  112. Степенные ряды
  113. Ряды Фурье
  114. Преобразование Фурье
  115. Функциональные ряды
  116. Функции многих переменных
  117. Метод координат
  118. Гармонический анализ
  119. Вещественные числа
  120. Предел последовательности
  121. Аналитическая геометрия
  122. Аналитическая геометрия на плоскости
  123. Аналитическая геометрия в пространстве
  124. Функции одной переменной
  125. Высшая алгебра
  126. Векторная алгебра
  127. Векторный анализ
  128. Векторы
  129. Скалярное произведение векторов
  130. Векторное произведение векторов
  131. Смешанное произведение векторов
  132. Операции над векторами
  133. Непрерывность функций
  134. Предел и непрерывность функций нескольких переменных
  135. Предел и непрерывность функции одной переменной
  136. Производные и дифференциалы функции одной переменной
  137. Частные производные и дифференцируемость функций нескольких переменных
  138. Дифференциальное исчисление функции одной переменной
  139. Матрицы
  140. Линейные и евклидовы пространства
  141. Линейные отображения
  142. Дифференциальные теоремы о среднем
  143. Теория устойчивости дифференциальных уравнений
  144. Функции комплексного переменного
  145. Преобразование Лапласа
  146. Теории поля
  147. Операционное исчисление
  148. Системы координат
  149. Рациональная функция
  150. Интегральное исчисление
  151. Интегральное исчисление функций одной переменной
  152. Дифференциальное исчисление функций нескольких переменных
  153. Отношение в математике
  154. Математическая логика
  155. Графы в математике
  156. Линейные пространства
  157. Первообразная и неопределенный интеграл
  158. Линейная функция
  159. Выпуклые множества точек
  160. Система координат